(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Some !vref); optwrite = (fun x -> vref := (match x with None -> max_depth | Some v -> v)) } in let lia_enum_opt = { optdepr = false; optname = "Lia Enum"; optkey = ["Lia";"Enum"]; optread = (fun () -> !lia_enum); optwrite = (fun x -> lia_enum := x) } in let _ = declare_int_option (int_opt ["Lra"; "Depth"] lra_proof_depth) in let _ = declare_int_option (int_opt ["Lia"; "Depth"] lia_proof_depth) in let _ = declare_bool_option lia_enum_opt in () (** * Initialize a tag type to the Tag module declaration (see Mutils). *) type tag = Tag.t (** * An atom is of the form: * pExpr1 \{<,>,=,<>,<=,>=\} pExpr2 * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are * parametrized by 'cst, which is used as the type of constants. *) type 'cst atom = 'cst Micromega.formula (** * Micromega's encoding of formulas. * By order of appearance: boolean constants, variables, atoms, conjunctions, * disjunctions, negation, implication. *) type 'cst formula = | TT | FF | X of EConstr.constr | A of 'cst atom * tag * EConstr.constr | C of 'cst formula * 'cst formula | D of 'cst formula * 'cst formula | N of 'cst formula | I of 'cst formula * Names.Id.t option * 'cst formula (** * Formula pretty-printer. *) let rec pp_formula o f = match f with | TT -> output_string o "tt" | FF -> output_string o "ff" | X c -> output_string o "X " | A(_,t,_) -> Printf.fprintf o "A(%a)" Tag.pp t | C(f1,f2) -> Printf.fprintf o "C(%a,%a)" pp_formula f1 pp_formula f2 | D(f1,f2) -> Printf.fprintf o "D(%a,%a)" pp_formula f1 pp_formula f2 | I(f1,n,f2) -> Printf.fprintf o "I(%a%s,%a)" pp_formula f1 (match n with | Some id -> Names.Id.to_string id | None -> "") pp_formula f2 | N(f) -> Printf.fprintf o "N(%a)" pp_formula f let rec map_atoms fct f = match f with | TT -> TT | FF -> FF | X x -> X x | A (at,tg,cstr) -> A(fct at,tg,cstr) | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2) | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2) | N f -> N(map_atoms fct f) | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2) let rec map_prop fct f = match f with | TT -> TT | FF -> FF | X x -> X (fct x) | A (at,tg,cstr) -> A(at,tg,cstr) | C (f1,f2) -> C(map_prop fct f1, map_prop fct f2) | D (f1,f2) -> D(map_prop fct f1, map_prop fct f2) | N f -> N(map_prop fct f) | I(f1,o,f2) -> I(map_prop fct f1, o , map_prop fct f2) (** * Collect the identifiers of a (string of) implications. Implication labels * are inherited from Coq/CoC's higher order dependent type constructor (Pi). *) let rec ids_of_formula f = match f with | I(f1,Some id,f2) -> id::(ids_of_formula f2) | _ -> [] (** * A clause is a list of (tagged) nFormulas. * nFormulas are normalized formulas, i.e., of the form: * cPol \{=,<>,>,>=\} 0 * with cPol compact polynomials (see the Pol inductive type in EnvRing.v). *) type 'cst clause = ('cst Micromega.nFormula * tag) list (** * A CNF is a list of clauses. *) type 'cst cnf = ('cst clause) list (** * True and False are empty cnfs and clauses. *) let tt : 'cst cnf = [] let ff : 'cst cnf = [ [] ] (** * A refinement of cnf with tags left out. This is an intermediary form * between the cnf tagged list representation ('cst cnf) used to solve psatz, * and the freeform formulas ('cst formula) that is retrieved from Coq. *) module Mc = Micromega type 'cst mc_cnf = ('cst Mc.nFormula) list list (** * From a freeform formula, build a cnf. * The parametric functions negate and normalize are theory-dependent, and * originate in micromega.ml (extracted, e.g. for rnegate, from RMicromega.v * and RingMicromega.v). *) type 'a tagged_option = T of tag list | S of 'a let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) = let negate a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in let normalise a t = List.map (fun cl -> List.map (fun x -> (x,t)) cl) (normalise a) in let and_cnf x y = x @ y in let rec add_term t0 = function | [] -> (match deduce (fst t0) (fst t0) with | Some u -> if unsat u then T [snd t0] else S (t0::[]) | None -> S (t0::[])) | t'::cl0 -> (match deduce (fst t0) (fst t') with | Some u -> if unsat u then T [snd t0 ; snd t'] else (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l) | None -> (match add_term t0 cl0 with | S cl' -> S (t'::cl') | T l -> T l)) in let rec or_clause cl1 cl2 = match cl1 with | [] -> S cl2 | t0::cl -> (match add_term t0 cl2 with | S cl' -> or_clause cl cl' | T l -> T l) in let or_clause_cnf t f = List.fold_right (fun e (acc,tg) -> match or_clause t e with | S cl -> (cl :: acc,tg) | T l -> (acc,tg@l)) f ([],[]) in let rec or_cnf f f' = match f with | [] -> tt,[] | e :: rst -> let (rst_f',t) = or_cnf rst f' in let (e_f', t') = or_clause_cnf e f' in (rst_f' @ e_f', t @ t') in let rec xcnf (polarity : bool) f = match f with | TT -> if polarity then (tt,[]) else (ff,[]) | FF -> if polarity then (ff,[]) else (tt,[]) | X p -> if polarity then (ff,[]) else (ff,[]) | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[]) | N(e) -> xcnf (not polarity) e | C(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then and_cnf e1 e2, t1 @ t2 else let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') | D(e1,e2) -> let e1,t1 = xcnf polarity e1 in let e2,t2 = xcnf polarity e2 in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 | I(e1,_,e2) -> let e1 , t1 = (xcnf (not polarity) e1) in let e2 , t2 = (xcnf polarity e2) in if polarity then let f',t' = or_cnf e1 e2 in (f', t1 @ t2 @ t') else and_cnf e1 e2, t1 @ t2 in xcnf true f (** * MODULE: Ordered set of integers. *) module ISet = Set.Make(Int) (** * Given a set of integers s=\{i0,...,iN\} and a list m, return the list of * elements of m that are at position i0,...,iN. *) let selecti s m = let rec xselecti i m = match m with | [] -> [] | e::m -> if ISet.mem i s then e::(xselecti (i+1) m) else xselecti (i+1) m in xselecti 0 m (** * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted * code. This includes initializing Caml variables based on Coq terms, parsing * various Coq expressions into Caml, and dumping Caml expressions into Coq. * * Opened here and in csdpcert.ml. *) module M = struct (** * Location of the Coq libraries. *) let logic_dir = ["Coq";"Logic";"Decidable"] let mic_modules = [ ["Coq";"Lists";"List"]; ["ZMicromega"]; ["Tauto"]; ["RingMicromega"]; ["EnvRing"]; ["Coq"; "micromega"; "ZMicromega"]; ["Coq"; "micromega"; "RMicromega"]; ["Coq" ; "micromega" ; "Tauto"]; ["Coq" ; "micromega" ; "RingMicromega"]; ["Coq" ; "micromega" ; "EnvRing"]; ["Coq";"QArith"; "QArith_base"]; ["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"]; ["LRing_normalise"]] let coq_modules = Coqlib.(init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules @ mic_modules) let bin_module = [["Coq";"Numbers";"BinNums"]] let r_modules = [["Coq";"Reals" ; "Rdefinitions"]; ["Coq";"Reals" ; "Rpow_def"] ; ["Coq";"Reals" ; "Raxioms"] ; ["Coq";"QArith"; "Qreals"] ; ] let z_modules = [["Coq";"ZArith";"BinInt"]] (** * Initialization : a large amount of Caml symbols are derived from * ZMicromega.v *) let gen_constant_in_modules s m n = EConstr.of_constr (UnivGen.constr_of_global @@ Coqlib.gen_reference_in_modules s m n) let init_constant = gen_constant_in_modules "ZMicromega" Coqlib.init_modules let constant = gen_constant_in_modules "ZMicromega" coq_modules let bin_constant = gen_constant_in_modules "ZMicromega" bin_module let r_constant = gen_constant_in_modules "ZMicromega" r_modules let z_constant = gen_constant_in_modules "ZMicromega" z_modules let m_constant = gen_constant_in_modules "ZMicromega" mic_modules let coq_and = lazy (init_constant "and") let coq_or = lazy (init_constant "or") let coq_not = lazy (init_constant "not") let coq_iff = lazy (init_constant "iff") let coq_True = lazy (init_constant "True") let coq_False = lazy (init_constant "False") let coq_cons = lazy (constant "cons") let coq_nil = lazy (constant "nil") let coq_list = lazy (constant "list") let coq_O = lazy (init_constant "O") let coq_S = lazy (init_constant "S") let coq_N0 = lazy (bin_constant "N0") let coq_Npos = lazy (bin_constant "Npos") let coq_xH = lazy (bin_constant "xH") let coq_xO = lazy (bin_constant "xO") let coq_xI = lazy (bin_constant "xI") let coq_Z = lazy (bin_constant "Z") let coq_ZERO = lazy (bin_constant "Z0") let coq_POS = lazy (bin_constant "Zpos") let coq_NEG = lazy (bin_constant "Zneg") let coq_Q = lazy (constant "Q") let coq_R = lazy (constant "R") let coq_Qmake = lazy (constant "Qmake") let coq_Rcst = lazy (constant "Rcst") let coq_C0 = lazy (m_constant "C0") let coq_C1 = lazy (m_constant "C1") let coq_CQ = lazy (m_constant "CQ") let coq_CZ = lazy (m_constant "CZ") let coq_CPlus = lazy (m_constant "CPlus") let coq_CMinus = lazy (m_constant "CMinus") let coq_CMult = lazy (m_constant "CMult") let coq_CInv = lazy (m_constant "CInv") let coq_COpp = lazy (m_constant "COpp") let coq_R0 = lazy (constant "R0") let coq_R1 = lazy (constant "R1") let coq_proofTerm = lazy (constant "ZArithProof") let coq_doneProof = lazy (constant "DoneProof") let coq_ratProof = lazy (constant "RatProof") let coq_cutProof = lazy (constant "CutProof") let coq_enumProof = lazy (constant "EnumProof") let coq_Zgt = lazy (z_constant "Z.gt") let coq_Zge = lazy (z_constant "Z.ge") let coq_Zle = lazy (z_constant "Z.le") let coq_Zlt = lazy (z_constant "Z.lt") let coq_Eq = lazy (init_constant "eq") let coq_Zplus = lazy (z_constant "Z.add") let coq_Zminus = lazy (z_constant "Z.sub") let coq_Zopp = lazy (z_constant "Z.opp") let coq_Zmult = lazy (z_constant "Z.mul") let coq_Zpower = lazy (z_constant "Z.pow") let coq_Qle = lazy (constant "Qle") let coq_Qlt = lazy (constant "Qlt") let coq_Qeq = lazy (constant "Qeq") let coq_Qplus = lazy (constant "Qplus") let coq_Qminus = lazy (constant "Qminus") let coq_Qopp = lazy (constant "Qopp") let coq_Qmult = lazy (constant "Qmult") let coq_Qpower = lazy (constant "Qpower") let coq_Rgt = lazy (r_constant "Rgt") let coq_Rge = lazy (r_constant "Rge") let coq_Rle = lazy (r_constant "Rle") let coq_Rlt = lazy (r_constant "Rlt") let coq_Rplus = lazy (r_constant "Rplus") let coq_Rminus = lazy (r_constant "Rminus") let coq_Ropp = lazy (r_constant "Ropp") let coq_Rmult = lazy (r_constant "Rmult") let coq_Rinv = lazy (r_constant "Rinv") let coq_Rpower = lazy (r_constant "pow") let coq_IZR = lazy (r_constant "IZR") let coq_IQR = lazy (r_constant "Q2R") let coq_PEX = lazy (constant "PEX" ) let coq_PEc = lazy (constant"PEc") let coq_PEadd = lazy (constant "PEadd") let coq_PEopp = lazy (constant "PEopp") let coq_PEmul = lazy (constant "PEmul") let coq_PEsub = lazy (constant "PEsub") let coq_PEpow = lazy (constant "PEpow") let coq_PX = lazy (constant "PX" ) let coq_Pc = lazy (constant"Pc") let coq_Pinj = lazy (constant "Pinj") let coq_OpEq = lazy (constant "OpEq") let coq_OpNEq = lazy (constant "OpNEq") let coq_OpLe = lazy (constant "OpLe") let coq_OpLt = lazy (constant "OpLt") let coq_OpGe = lazy (constant "OpGe") let coq_OpGt = lazy (constant "OpGt") let coq_PsatzIn = lazy (constant "PsatzIn") let coq_PsatzSquare = lazy (constant "PsatzSquare") let coq_PsatzMulE = lazy (constant "PsatzMulE") let coq_PsatzMultC = lazy (constant "PsatzMulC") let coq_PsatzAdd = lazy (constant "PsatzAdd") let coq_PsatzC = lazy (constant "PsatzC") let coq_PsatzZ = lazy (constant "PsatzZ") let coq_TT = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT") let coq_FF = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF") let coq_And = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj") let coq_Or = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D") let coq_Neg = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N") let coq_Atom = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A") let coq_X = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X") let coq_Impl = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I") let coq_Formula = lazy (gen_constant_in_modules "ZMicromega" [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula") (** * Initialization : a few Caml symbols are derived from other libraries; * QMicromega, ZArithRing, RingMicromega. *) let coq_QWitness = lazy (gen_constant_in_modules "QMicromega" [["Coq"; "micromega"; "QMicromega"]] "QWitness") let coq_Build = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Build_Formula") let coq_Cstr = lazy (gen_constant_in_modules "RingMicromega" [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula") (** * Parsing and dumping : transformation functions between Caml and Coq * data-structures. * * dump_* functions go from Micromega to Coq terms * parse_* functions go from Coq to Micromega terms * pp_* functions pretty-print Coq terms. *) exception ParseError (* A simple but useful getter function *) let get_left_construct sigma term = match EConstr.kind sigma term with | Construct((_,i),_) -> (i,[| |]) | App(l,rst) -> (match EConstr.kind sigma l with | Construct((_,i),_) -> (i,rst) | _ -> raise ParseError ) | _ -> raise ParseError (* Access the Micromega module *) (* parse/dump/print from numbers up to expressions and formulas *) let rec parse_nat sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.O | 2 -> Mc.S (parse_nat sigma (c.(0))) | i -> raise ParseError let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n) let rec dump_nat x = match x with | Mc.O -> Lazy.force coq_O | Mc.S p -> EConstr.mkApp(Lazy.force coq_S,[| dump_nat p |]) let rec parse_positive sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.XI (parse_positive sigma c.(0)) | 2 -> Mc.XO (parse_positive sigma c.(0)) | 3 -> Mc.XH | i -> raise ParseError let rec dump_positive x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> EConstr.mkApp(Lazy.force coq_xO,[| dump_positive p |]) | Mc.XI p -> EConstr.mkApp(Lazy.force coq_xI,[| dump_positive p |]) let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x) let dump_n x = match x with | Mc.N0 -> Lazy.force coq_N0 | Mc.Npos p -> EConstr.mkApp(Lazy.force coq_Npos,[| dump_positive p|]) let parse_z sigma term = let (i,c) = get_left_construct sigma term in match i with | 1 -> Mc.Z0 | 2 -> Mc.Zpos (parse_positive sigma c.(0)) | 3 -> Mc.Zneg (parse_positive sigma c.(0)) | i -> raise ParseError let dump_z x = match x with | Mc.Z0 ->Lazy.force coq_ZERO | Mc.Zpos p -> EConstr.mkApp(Lazy.force coq_POS,[| dump_positive p|]) | Mc.Zneg p -> EConstr.mkApp(Lazy.force coq_NEG,[| dump_positive p|]) let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x)) let dump_q q = EConstr.mkApp(Lazy.force coq_Qmake, [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|]) let parse_q sigma term = match EConstr.kind sigma term with | App(c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then {Mc.qnum = parse_z sigma args.(0) ; Mc.qden = parse_positive sigma args.(1) } else raise ParseError | _ -> raise ParseError let rec pp_Rcst o cst = match cst with | Mc.C0 -> output_string o "C0" | Mc.C1 -> output_string o "C1" | Mc.CQ q -> output_string o "CQ _" | Mc.CZ z -> pp_z o z | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t let rec dump_Rcst cst = match cst with | Mc.C0 -> Lazy.force coq_C0 | Mc.C1 -> Lazy.force coq_C1 | Mc.CQ q -> EConstr.mkApp(Lazy.force coq_CQ, [| dump_q q |]) | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_CZ, [| dump_z z |]) | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |]) | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |]) | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |]) let rec dump_list typ dump_elt l = match l with | [] -> EConstr.mkApp(Lazy.force coq_nil,[| typ |]) | e :: l -> EConstr.mkApp(Lazy.force coq_cons, [| typ; dump_elt e;dump_list typ dump_elt l|]) let pp_list op cl elt o l = let rec _pp o l = match l with | [] -> () | [e] -> Printf.fprintf o "%a" elt e | e::l -> Printf.fprintf o "%a ,%a" elt e _pp l in Printf.fprintf o "%s%a%s" op _pp l cl let dump_var = dump_positive let dump_expr typ dump_z e = let rec dump_expr e = match e with | Mc.PEX n -> EConstr.mkApp(Lazy.force coq_PEX,[| typ; dump_var n |]) | Mc.PEc z -> EConstr.mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |]) | Mc.PEadd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEadd, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEsub(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEsub, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp(Lazy.force coq_PEopp, [| typ; dump_expr e|]) | Mc.PEmul(e1,e2) -> EConstr.mkApp(Lazy.force coq_PEmul, [| typ; dump_expr e1;dump_expr e2|]) | Mc.PEpow(e,n) -> EConstr.mkApp(Lazy.force coq_PEpow, [| typ; dump_expr e; dump_n n|]) in dump_expr e let dump_pol typ dump_c e = let rec dump_pol e = match e with | Mc.Pc n -> EConstr.mkApp(Lazy.force coq_Pc, [|typ ; dump_c n|]) | Mc.Pinj(p,pol) -> EConstr.mkApp(Lazy.force coq_Pinj , [| typ ; dump_positive p ; dump_pol pol|]) | Mc.PX(pol1,p,pol2) -> EConstr.mkApp(Lazy.force coq_PX, [| typ ; dump_pol pol1 ; dump_positive p ; dump_pol pol2|]) in dump_pol e let pp_pol pp_c o e = let rec pp_pol o e = match e with | Mc.Pc n -> Printf.fprintf o "Pc %a" pp_c n | Mc.Pinj(p,pol) -> Printf.fprintf o "Pinj(%a,%a)" pp_positive p pp_pol pol | Mc.PX(pol1,p,pol2) -> Printf.fprintf o "PX(%a,%a,%a)" pp_pol pol1 pp_positive p pp_pol pol2 in pp_pol o e let pp_cnf pp_c o f = let pp_clause o l = List.iter (fun ((p,_),t) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) l in List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause l) f let dump_psatz typ dump_z e = let z = Lazy.force typ in let rec dump_cone e = match e with | Mc.PsatzIn n -> EConstr.mkApp(Lazy.force coq_PsatzIn,[| z; dump_nat n |]) | Mc.PsatzMulC(e,c) -> EConstr.mkApp(Lazy.force coq_PsatzMultC, [| z; dump_pol z dump_z e ; dump_cone c |]) | Mc.PsatzSquare e -> EConstr.mkApp(Lazy.force coq_PsatzSquare, [| z;dump_pol z dump_z e|]) | Mc.PsatzAdd(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzAdd, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzMulE(e1,e2) -> EConstr.mkApp(Lazy.force coq_PsatzMulE, [| z; dump_cone e1; dump_cone e2|]) | Mc.PsatzC p -> EConstr.mkApp(Lazy.force coq_PsatzC,[| z; dump_z p|]) | Mc.PsatzZ -> EConstr.mkApp(Lazy.force coq_PsatzZ,[| z|]) in dump_cone e let pp_psatz pp_z o e = let rec pp_cone o e = match e with | Mc.PsatzIn n -> Printf.fprintf o "(In %a)%%nat" pp_nat n | Mc.PsatzMulC(e,c) -> Printf.fprintf o "( %a [*] %a)" (pp_pol pp_z) e pp_cone c | Mc.PsatzSquare e -> Printf.fprintf o "(%a^2)" (pp_pol pp_z) e | Mc.PsatzAdd(e1,e2) -> Printf.fprintf o "(%a [+] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzMulE(e1,e2) -> Printf.fprintf o "(%a [*] %a)" pp_cone e1 pp_cone e2 | Mc.PsatzC p -> Printf.fprintf o "(%a)%%positive" pp_z p | Mc.PsatzZ -> Printf.fprintf o "0" in pp_cone o e let dump_op = function | Mc.OpEq-> Lazy.force coq_OpEq | Mc.OpNEq-> Lazy.force coq_OpNEq | Mc.OpLe -> Lazy.force coq_OpLe | Mc.OpGe -> Lazy.force coq_OpGe | Mc.OpGt-> Lazy.force coq_OpGt | Mc.OpLt-> Lazy.force coq_OpLt let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} = EConstr.mkApp(Lazy.force coq_Build, [| typ; dump_expr typ dump_constant e1 ; dump_op o ; dump_expr typ dump_constant e2|]) let assoc_const sigma x l = try snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> raise ParseError let zop_table = [ coq_Zgt, Mc.OpGt ; coq_Zge, Mc.OpGe ; coq_Zlt, Mc.OpLt ; coq_Zle, Mc.OpLe ] let rop_table = [ coq_Rgt, Mc.OpGt ; coq_Rge, Mc.OpGe ; coq_Rlt, Mc.OpLt ; coq_Rle, Mc.OpLe ] let qop_table = [ coq_Qlt, Mc.OpLt ; coq_Qle, Mc.OpLe ; coq_Qeq, Mc.OpEq ] type gl = { env : Environ.env; sigma : Evd.evar_map } let is_convertible gl t1 t2 = Reductionops.is_conv gl.env gl.sigma t1 t2 let parse_zop gl (op,args) = let sigma = gl.sigma in match EConstr.kind sigma op with | Const (x,_) -> (assoc_const sigma op zop_table, args.(0) , args.(1)) | Ind((n,0),_) -> if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_Z) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_rop gl (op,args) = let sigma = gl.sigma in match EConstr.kind sigma op with | Const (x,_) -> (assoc_const sigma op rop_table, args.(0) , args.(1)) | Ind((n,0),_) -> if EConstr.eq_constr sigma op (Lazy.force coq_Eq) && is_convertible gl args.(0) (Lazy.force coq_R) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> failwith "parse_zop" let parse_qop gl (op,args) = (assoc_const gl.sigma op qop_table, args.(0) , args.(1)) type 'a op = | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr) | Opp | Power | Ukn of string let assoc_ops sigma x l = try snd (List.find (fun (x',y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> Ukn "Oups" (** * MODULE: Env is for environment. *) module Env = struct let compute_rank_add env sigma v = let rec _add env n v = match env with | [] -> ([v],n) | e::l -> if EConstr.eq_constr sigma e v then (env,n) else let (env,n) = _add l ( n+1) v in (e::env,n) in let (env, n) = _add env 1 v in (env, CamlToCoq.positive n) let get_rank env sigma v = let rec _get_rank env n = match env with | [] -> raise (Invalid_argument "get_rank") | e::l -> if EConstr.eq_constr sigma e v then n else _get_rank l (n+1) in _get_rank env 1 let empty = [] let elements env = env end (* MODULE END: Env *) (** * This is the big generic function for expression parsers. *) let parse_expr sigma parse_constant parse_exp ops_spec env term = if debug then ( let _, env = Pfedit.get_current_context () in Feedback.msg_debug (Pp.str "parse_expr: " ++ Printer.pr_leconstr_env env sigma term)); (* let constant_or_variable env term = try ( Mc.PEc (parse_constant term) , env) with ParseError -> let (env,n) = Env.compute_rank_add env term in (Mc.PEX n , env) in *) let parse_variable env term = let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n , env) in let rec parse_expr env term = let combine env op (t1,t2) = let (expr1,env) = parse_expr env t1 in let (expr2,env) = parse_expr env t2 in (op expr1 expr2,env) in try (Mc.PEc (parse_constant term) , env) with ParseError -> match EConstr.kind sigma term with | App(t,args) -> ( match EConstr.kind sigma t with | Const c -> ( match assoc_ops sigma t ops_spec with | Binop f -> combine env f (args.(0),args.(1)) | Opp -> let (expr,env) = parse_expr env args.(0) in (Mc.PEopp expr, env) | Power -> begin try let (expr,env) = parse_expr env args.(0) in let power = (parse_exp expr args.(1)) in (power , env) with e when CErrors.noncritical e -> (* if the exponent is a variable *) let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env) end | Ukn s -> if debug then (Printf.printf "unknown op: %s\n" s; flush stdout;); let (env,n) = Env.compute_rank_add env sigma term in (Mc.PEX n, env) ) | _ -> parse_variable env term ) | _ -> parse_variable env term in parse_expr env term let zop_spec = [ coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Zopp , Opp ; coq_Zpower , Power] let qop_spec = [ coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Qopp , Opp ; coq_Qpower , Power] let rop_spec = [ coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ; coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ; coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ; coq_Ropp , Opp ; coq_Rpower , Power] let zconstant = parse_z let qconstant = parse_q let rconst_assoc = [ coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ; coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ; coq_Rmult , (fun x y -> Mc.CMult(x,y)) ; (* coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;*) ] let rec rconstant sigma term = match EConstr.kind sigma term with | Const x -> if EConstr.eq_constr sigma term (Lazy.force coq_R0) then Mc.C0 else if EConstr.eq_constr sigma term (Lazy.force coq_R1) then Mc.C1 else raise ParseError | App(op,args) -> begin try (* the evaluation order is important in the following *) let f = assoc_const sigma op rconst_assoc in let a = rconstant sigma args.(0) in let b = rconstant sigma args.(1) in f a b with ParseError -> match op with | op when EConstr.eq_constr sigma op (Lazy.force coq_Rinv) -> let arg = rconstant sigma args.(0) in if Mc.qeq_bool (Mc.q_of_Rcst arg) {Mc.qnum = Mc.Z0 ; Mc.qden = Mc.XH} then raise ParseError (* This is a division by zero -- no semantics *) else Mc.CInv(arg) | op when EConstr.eq_constr sigma op (Lazy.force coq_IQR) -> Mc.CQ (parse_q sigma args.(0)) | op when EConstr.eq_constr sigma op (Lazy.force coq_IZR) -> Mc.CZ (parse_z sigma args.(0)) | _ -> raise ParseError end | _ -> raise ParseError let rconstant sigma term = let _, env = Pfedit.get_current_context () in if debug then Feedback.msg_debug (Pp.str "rconstant: " ++ Printer.pr_leconstr_env env sigma term ++ fnl ()); let res = rconstant sigma term in if debug then (Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ; res let parse_zexpr sigma = parse_expr sigma (zconstant sigma) (fun expr x -> let exp = (parse_z sigma x) in match exp with | Mc.Zneg _ -> Mc.PEc Mc.Z0 | _ -> Mc.PEpow(expr, Mc.Z.to_N exp)) zop_spec let parse_qexpr sigma = parse_expr sigma (qconstant sigma) (fun expr x -> let exp = parse_z sigma x in match exp with | Mc.Zneg _ -> begin match expr with | Mc.PEc q -> Mc.PEc (Mc.qpower q exp) | _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError end | _ -> let exp = Mc.Z.to_N exp in Mc.PEpow(expr,exp)) qop_spec let parse_rexpr sigma = parse_expr sigma (rconstant sigma) (fun expr x -> let exp = Mc.N.of_nat (parse_nat sigma x) in Mc.PEpow(expr,exp)) rop_spec let parse_arith parse_op parse_expr env cstr gl = let sigma = gl.sigma in if debug then Feedback.msg_debug (Pp.str "parse_arith: " ++ Printer.pr_leconstr_env gl.env sigma cstr ++ fnl ()); match EConstr.kind sigma cstr with | App(op,args) -> let (op,lhs,rhs) = parse_op gl (op,args) in let (e1,env) = parse_expr sigma env lhs in let (e2,env) = parse_expr sigma env rhs in ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env) | _ -> failwith "error : parse_arith(2)" let parse_zarith = parse_arith parse_zop parse_zexpr let parse_qarith = parse_arith parse_qop parse_qexpr let parse_rarith = parse_arith parse_rop parse_rexpr (* generic parsing of arithmetic expressions *) let mkC f1 f2 = C(f1,f2) let mkD f1 f2 = D(f1,f2) let mkIff f1 f2 = C(I(f1,None,f2),I(f2,None,f1)) let mkI f1 f2 = I(f1,None,f2) let mkformula_binary g term f1 f2 = match f1 , f2 with | X _ , X _ -> X(term) | _ -> g f1 f2 (** * This is the big generic function for formula parsers. *) let parse_formula gl parse_atom env tg term = let sigma = gl.sigma in let parse_atom env tg t = try let (at,env) = parse_atom env t gl in (A(at,tg,t), env,Tag.next tg) with e when CErrors.noncritical e -> (X(t),env,tg) in let is_prop term = let sort = Retyping.get_sort_of gl.env gl.sigma term in Sorts.is_prop sort in let rec xparse_formula env tg term = match EConstr.kind sigma term with | App(l,rst) -> (match rst with | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_and) -> let f,env,tg = xparse_formula env tg a in let g,env, tg = xparse_formula env tg b in mkformula_binary mkC term f g,env,tg | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_or) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkD term f g,env,tg | [|a|] when EConstr.eq_constr sigma l (Lazy.force coq_not) -> let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg) | [|a;b|] when EConstr.eq_constr sigma l (Lazy.force coq_iff) -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkIff term f g,env,tg | _ -> parse_atom env tg term) | Prod(typ,a,b) when EConstr.Vars.noccurn sigma 1 b -> let f,env,tg = xparse_formula env tg a in let g,env,tg = xparse_formula env tg b in mkformula_binary mkI term f g,env,tg | _ when EConstr.eq_constr sigma term (Lazy.force coq_True) -> (TT,env,tg) | _ when EConstr.eq_constr sigma term (Lazy.force coq_False) -> (FF,env,tg) | _ when is_prop term -> X(term),env,tg | _ -> raise ParseError in xparse_formula env tg ((*Reductionops.whd_zeta*) term) let dump_formula typ dump_atom f = let rec xdump f = match f with | TT -> EConstr.mkApp(Lazy.force coq_TT,[|typ|]) | FF -> EConstr.mkApp(Lazy.force coq_FF,[|typ|]) | C(x,y) -> EConstr.mkApp(Lazy.force coq_And,[|typ ; xdump x ; xdump y|]) | D(x,y) -> EConstr.mkApp(Lazy.force coq_Or,[|typ ; xdump x ; xdump y|]) | I(x,_,y) -> EConstr.mkApp(Lazy.force coq_Impl,[|typ ; xdump x ; xdump y|]) | N(x) -> EConstr.mkApp(Lazy.force coq_Neg,[|typ ; xdump x|]) | A(x,_,_) -> EConstr.mkApp(Lazy.force coq_Atom,[|typ ; dump_atom x|]) | X(t) -> EConstr.mkApp(Lazy.force coq_X,[|typ ; t|]) in xdump f let prop_env_of_formula sigma form = let rec doit env = function | TT | FF | A(_,_,_) -> env | X t -> fst (Env.compute_rank_add env sigma t) | C(f1,f2) | D(f1,f2) | I(f1,_,f2) -> doit (doit env f1) f2 | N f -> doit env f in doit [] form let var_env_of_formula form = let rec vars_of_expr = function | Mc.PEX n -> ISet.singleton (CoqToCaml.positive n) | Mc.PEc z -> ISet.empty | Mc.PEadd(e1,e2) | Mc.PEmul(e1,e2) | Mc.PEsub(e1,e2) -> ISet.union (vars_of_expr e1) (vars_of_expr e2) | Mc.PEopp e | Mc.PEpow(e,_)-> vars_of_expr e in let vars_of_atom {Mc.flhs ; Mc.fop; Mc.frhs} = ISet.union (vars_of_expr flhs) (vars_of_expr frhs) in let rec doit = function | TT | FF | X _ -> ISet.empty | A (a,t,c) -> vars_of_atom a | C(f1,f2) | D(f1,f2) |I (f1,_,f2) -> ISet.union (doit f1) (doit f2) | N f -> doit f in doit form type 'cst dump_expr = (* 'cst is the type of the syntactic constants *) { interp_typ : EConstr.constr; dump_cst : 'cst -> EConstr.constr; dump_add : EConstr.constr; dump_sub : EConstr.constr; dump_opp : EConstr.constr; dump_mul : EConstr.constr; dump_pow : EConstr.constr; dump_pow_arg : Mc.n -> EConstr.constr; dump_op : (Mc.op2 * EConstr.constr) list } let dump_zexpr = lazy { interp_typ = Lazy.force coq_Z; dump_cst = dump_z; dump_add = Lazy.force coq_Zplus; dump_sub = Lazy.force coq_Zminus; dump_opp = Lazy.force coq_Zopp; dump_mul = Lazy.force coq_Zmult; dump_pow = Lazy.force coq_Zpower; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) zop_table } let dump_qexpr = lazy { interp_typ = Lazy.force coq_Q; dump_cst = dump_q; dump_add = Lazy.force coq_Qplus; dump_sub = Lazy.force coq_Qminus; dump_opp = Lazy.force coq_Qopp; dump_mul = Lazy.force coq_Qmult; dump_pow = Lazy.force coq_Qpower; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) qop_table } let rec dump_Rcst_as_R cst = match cst with | Mc.C0 -> Lazy.force coq_R0 | Mc.C1 -> Lazy.force coq_R1 | Mc.CQ q -> EConstr.mkApp(Lazy.force coq_IQR, [| dump_q q |]) | Mc.CZ z -> EConstr.mkApp(Lazy.force coq_IZR, [| dump_z z |]) | Mc.CPlus(x,y) -> EConstr.mkApp(Lazy.force coq_Rplus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CMinus(x,y) -> EConstr.mkApp(Lazy.force coq_Rminus, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CMult(x,y) -> EConstr.mkApp(Lazy.force coq_Rmult, [| dump_Rcst_as_R x ; dump_Rcst_as_R y |]) | Mc.CInv t -> EConstr.mkApp(Lazy.force coq_Rinv, [| dump_Rcst_as_R t |]) | Mc.COpp t -> EConstr.mkApp(Lazy.force coq_Ropp, [| dump_Rcst_as_R t |]) let dump_rexpr = lazy { interp_typ = Lazy.force coq_R; dump_cst = dump_Rcst_as_R; dump_add = Lazy.force coq_Rplus; dump_sub = Lazy.force coq_Rminus; dump_opp = Lazy.force coq_Ropp; dump_mul = Lazy.force coq_Rmult; dump_pow = Lazy.force coq_Rpower; dump_pow_arg = (fun n -> dump_nat (CamlToCoq.nat (CoqToCaml.n n))); dump_op = List.map (fun (x,y) -> (y,Lazy.force x)) rop_table } (** [make_goal_of_formula depxr vars props form] where - vars is an environment for the arithmetic variables occuring in form - props is an environment for the propositions occuring in form @return a goal where all the variables and propositions of the formula are quantified *) let prodn n env b = let rec prodrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> prodrec (n-1, l, EConstr.mkProd (v,t,b)) | _ -> assert false in prodrec (n,env,b) let make_goal_of_formula sigma dexpr form = let vars_idx = List.mapi (fun i v -> (v, i+1)) (ISet.elements (var_env_of_formula form)) in (* List.iter (fun (v,i) -> Printf.fprintf stdout "var %i has index %i\n" v i) vars_idx ;*) let props = prop_env_of_formula sigma form in let vars_n = List.map (fun (_,i) -> (Names.Id.of_string (Printf.sprintf "__x%i" i)) , dexpr.interp_typ) vars_idx in let props_n = List.mapi (fun i _ -> (Names.Id.of_string (Printf.sprintf "__p%i" (i+1))) , EConstr.mkProp) props in let var_name_pos = List.map2 (fun (idx,_) (id,_) -> id,idx) vars_idx vars_n in let dump_expr i e = let rec dump_expr = function | Mc.PEX n -> EConstr.mkRel (i+(List.assoc (CoqToCaml.positive n) vars_idx)) | Mc.PEc z -> dexpr.dump_cst z | Mc.PEadd(e1,e2) -> EConstr.mkApp(dexpr.dump_add, [| dump_expr e1;dump_expr e2|]) | Mc.PEsub(e1,e2) -> EConstr.mkApp(dexpr.dump_sub, [| dump_expr e1;dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp(dexpr.dump_opp, [| dump_expr e|]) | Mc.PEmul(e1,e2) -> EConstr.mkApp(dexpr.dump_mul, [| dump_expr e1;dump_expr e2|]) | Mc.PEpow(e,n) -> EConstr.mkApp(dexpr.dump_pow, [| dump_expr e; dexpr.dump_pow_arg n|]) in dump_expr e in let mkop op e1 e2 = try EConstr.mkApp(List.assoc op dexpr.dump_op, [| e1; e2|]) with Not_found -> EConstr.mkApp(Lazy.force coq_Eq,[|dexpr.interp_typ ; e1 ;e2|]) in let dump_cstr i { Mc.flhs ; Mc.fop ; Mc.frhs } = mkop fop (dump_expr i flhs) (dump_expr i frhs) in let rec xdump pi xi f = match f with | TT -> Lazy.force coq_True | FF -> Lazy.force coq_False | C(x,y) -> EConstr.mkApp(Lazy.force coq_and,[|xdump pi xi x ; xdump pi xi y|]) | D(x,y) -> EConstr.mkApp(Lazy.force coq_or,[| xdump pi xi x ; xdump pi xi y|]) | I(x,_,y) -> EConstr.mkArrow (xdump pi xi x) (xdump (pi+1) (xi+1) y) | N(x) -> EConstr.mkArrow (xdump pi xi x) (Lazy.force coq_False) | A(x,_,_) -> dump_cstr xi x | X(t) -> let idx = Env.get_rank props sigma t in EConstr.mkRel (pi+idx) in let nb_vars = List.length vars_n in let nb_props = List.length props_n in (* Printf.fprintf stdout "NBProps : %i\n" nb_props ;*) let subst_prop p = let idx = Env.get_rank props sigma p in EConstr.mkVar (Names.Id.of_string (Printf.sprintf "__p%i" idx)) in let form' = map_prop subst_prop form in (prodn nb_props (List.map (fun (x,y) -> Name.Name x,y) props_n) (prodn nb_vars (List.map (fun (x,y) -> Name.Name x,y) vars_n) (xdump (List.length vars_n) 0 form)), List.rev props_n, List.rev var_name_pos,form') (** * Given a conclusion and a list of affectations, rebuild a term prefixed by * the appropriate letins. * TODO: reverse the list of bindings! *) let set l concl = let rec xset acc = function | [] -> acc | (e::l) -> let (name,expr,typ) = e in xset (EConstr.mkNamedLetIn (Names.Id.of_string name) expr typ acc) l in xset concl l end (** * MODULE END: M *) open M let coq_Node = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node") let coq_Leaf = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf") let coq_Empty = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty") let coq_VarMap = lazy (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t") let rec dump_varmap typ m = match m with | Mc.Empty -> EConstr.mkApp(Lazy.force coq_Empty,[| typ |]) | Mc.Leaf v -> EConstr.mkApp(Lazy.force coq_Leaf,[| typ; v|]) | Mc.Node(l,o,r) -> EConstr.mkApp (Lazy.force coq_Node, [| typ; dump_varmap typ l; o ; dump_varmap typ r |]) let vm_of_list env = match env with | [] -> Mc.Empty | (d,_)::_ -> List.fold_left (fun vm (c,i) -> Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env let rec dump_proof_term = function | Micromega.DoneProof -> Lazy.force coq_doneProof | Micromega.RatProof(cone,rst) -> EConstr.mkApp(Lazy.force coq_ratProof, [| dump_psatz coq_Z dump_z cone; dump_proof_term rst|]) | Micromega.CutProof(cone,prf) -> EConstr.mkApp(Lazy.force coq_cutProof, [| dump_psatz coq_Z dump_z cone ; dump_proof_term prf|]) | Micromega.EnumProof(c1,c2,prfs) -> EConstr.mkApp (Lazy.force coq_enumProof, [| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ; dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |]) let rec size_of_psatz = function | Micromega.PsatzIn _ -> 1 | Micromega.PsatzSquare _ -> 1 | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p) | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2 | Micromega.PsatzC _ -> 1 | Micromega.PsatzZ -> 1 let rec size_of_pf = function | Micromega.DoneProof -> 1 | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p) | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l) let dump_proof_term t = if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ; dump_proof_term t let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden let rec pp_proof_term o = function | Micromega.DoneProof -> Printf.fprintf o "D" | Micromega.RatProof(cone,rst) -> Printf.fprintf o "R[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.CutProof(cone,rst) -> Printf.fprintf o "C[%a,%a]" (pp_psatz pp_z) cone pp_proof_term rst | Micromega.EnumProof(c1,c2,rst) -> Printf.fprintf o "EP[%a,%a,%a]" (pp_psatz pp_z) c1 (pp_psatz pp_z) c2 (pp_list "[" "]" pp_proof_term) rst let rec parse_hyps gl parse_arith env tg hyps = match hyps with | [] -> ([],env,tg) | (i,t)::l -> let (lhyps,env,tg) = parse_hyps gl parse_arith env tg l in try let (c,env,tg) = parse_formula gl parse_arith env tg t in ((i,c)::lhyps, env,tg) with e when CErrors.noncritical e -> (lhyps,env,tg) (*(if debug then Printf.printf "parse_arith : %s\n" x);*) (*exception ParseError*) let parse_goal gl parse_arith env hyps term = (* try*) let (f,env,tg) = parse_formula gl parse_arith env (Tag.from 0) term in let (lhyps,env,tg) = parse_hyps gl parse_arith env tg hyps in (lhyps,f,env) (* with Failure x -> raise ParseError*) (** * The datastructures that aggregate theory-dependent proof values. *) type ('synt_c, 'prf) domain_spec = { typ : EConstr.constr; (* is the type of the interpretation domain - Z, Q, R*) coeff : EConstr.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *) dump_coeff : 'synt_c -> EConstr.constr ; proof_typ : EConstr.constr ; dump_proof : 'prf -> EConstr.constr } let zz_domain_spec = lazy { typ = Lazy.force coq_Z; coeff = Lazy.force coq_Z; dump_coeff = dump_z ; proof_typ = Lazy.force coq_proofTerm ; dump_proof = dump_proof_term } let qq_domain_spec = lazy { typ = Lazy.force coq_Q; coeff = Lazy.force coq_Q; dump_coeff = dump_q ; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } (** Naive topological sort of constr according to the subterm-ordering *) (* An element is minimal x is minimal w.r.t y if x <= y or (x and y are incomparable) *) (** * Instanciate the current Coq goal with a Micromega formula, a varmap, and a * witness. *) let micromega_order_change spec cert cert_typ env ff (*: unit Proofview.tactic*) = (* let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in let vm = dump_varmap (spec.typ) (vm_of_list env) in (* todo : directly generate the proof term - or generalize before conversion? *) Proofview.Goal.nf_enter begin fun gl -> Tacticals.New.tclTHENLIST [ Tactics.change_concl (set [ ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, EConstr.mkApp(Lazy.force coq_VarMap, [|spec.typ|])); ("__wit", cert, cert_typ) ] (Tacmach.New.pf_concl gl)) ] end (** * The datastructures that aggregate prover attributes. *) type ('option,'a,'prf) prover = { name : string ; (* name of the prover *) get_option : unit ->'option ; (* find the options of the prover *) prover : 'option * 'a list -> 'prf option ; (* the prover itself *) hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *) compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *) pp_prf : out_channel -> 'prf -> unit ;(* pretting printing of proof *) pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*) } (** * Given a list of provers and a disjunction of atoms, find a proof of any of * the atoms. Returns an (optional) pair of a proof and a prover * datastructure. *) let find_witness provers polys1 = let provers = List.map (fun p -> (fun l -> match p.prover (p.get_option (),l) with | None -> None | Some prf -> Some(prf,p)) , p.name) provers in try_any provers (List.map fst polys1) (** * Given a list of provers and a CNF, find a proof for each of the clauses. * Return the proofs as a list. *) let witness_list prover l = let rec xwitness_list l = match l with | [] -> Some [] | e :: l -> match find_witness prover e with | None -> None | Some w -> (match xwitness_list l with | None -> None | Some l -> Some (w :: l) ) in xwitness_list l let witness_list_tags = witness_list (** * Prune the proof object, according to the 'diff' between two cnf formulas. *) let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) = let compact_proof (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let new_cl = List.mapi (fun i (f,_) -> (f,i)) new_cl in let remap i = let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in List.assoc formula new_cl in (* if debug then begin Printf.printf "\ncompact_proof : %a %a %a" (pp_ml_list prover.pp_f) (List.map fst old_cl) prover.pp_prf prf (pp_ml_list prover.pp_f) (List.map fst new_cl) ; flush stdout end ; *) let res = try prover.compact prf remap with x when CErrors.noncritical x -> if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ; (* This should not happen -- this is the recovery plan... *) match prover.prover (prover.get_option () ,List.map fst new_cl) with | None -> failwith "proof compaction error" | Some p -> p in if debug then begin Printf.printf " -> %a\n" prover.pp_prf res ; flush stdout end ; res in let is_proof_compatible (old_cl:'cst clause) (prf,prover) (new_cl:'cst clause) = let hyps_idx = prover.hyps prf in let hyps = selecti hyps_idx old_cl in is_sublist Pervasives.(=) hyps new_cl in let cnf_res = List.combine cnf_ff res in (* we get pairs clause * proof *) List.map (fun x -> let (o,p) = List.find (fun (l,p) -> is_proof_compatible l p x) cnf_res in compact_proof o p x) cnf_ff' (** * "Hide out" tagged atoms of a formula by transforming them into generic * variables. See the Tag module in mutils.ml for more. *) let abstract_formula hyps f = let rec xabs f = match f with | X c -> X c | A(a,t,term) -> if TagSet.mem t hyps then A(a,t,term) else X(term) | C(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_and, [|a1;a2|])) | f1 , f2 -> C(f1,f2) ) | D(f1,f2) -> (match xabs f1 , xabs f2 with | X a1 , X a2 -> X (EConstr.mkApp(Lazy.force coq_or, [|a1;a2|])) | f1 , f2 -> D(f1,f2) ) | N(f) -> (match xabs f with | X a -> X (EConstr.mkApp(Lazy.force coq_not, [|a|])) | f -> N f) | I(f1,hyp,f2) -> (match xabs f1 , hyp, xabs f2 with | X a1 , Some _ , af2 -> af2 | X a1 , None , X a2 -> X (EConstr.mkArrow a1 a2) | af1 , _ , af2 -> I(af1,hyp,af2) ) | FF -> FF | TT -> TT in xabs f (* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *) let rec abstract_wrt_formula f1 f2 = match f1 , f2 with | X c , _ -> X c | A _ , A _ -> f2 | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b') | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b') | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b') | FF , FF -> FF | TT , TT -> TT | N x , N y -> N(abstract_wrt_formula x y) | _ -> failwith "abstract_wrt_formula" (** * This exception is raised by really_call_csdpcert if Coq's configure didn't * find a CSDP executable. *) exception CsdpNotFound (** * This is the core of Micromega: apply the prover, analyze the result and * prune unused fomulas, and finally modify the proof state. *) let formula_hyps_concl hyps concl = List.fold_right (fun (id,f) (cc,ids) -> match f with X _ -> (cc,ids) | _ -> (I(f,Some id,cc), id::ids)) hyps (concl,[]) let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl = (* Express the goal as one big implication *) let (ff,ids) = formula_hyps_concl polys1 polys2 in (* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *) let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in if debug then begin Feedback.msg_notice (Pp.str "Formula....\n") ; let formula_typ = (EConstr.mkApp(Lazy.force coq_Cstr, [|spec.coeff|])) in let ff = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff in Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff end; match witness_list_tags prover cnf_ff with | None -> None | Some res -> (*Printf.printf "\nList %i" (List.length `res); *) let hyps = List.fold_left (fun s (cl,(prf,p)) -> let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ; (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout; Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ; let ff' = abstract_formula hyps ff in let cnf_ff',_ = cnf negate normalise unsat deduce ff' in if debug then begin Feedback.msg_notice (Pp.str "\nAFormula\n") ; let formula_typ = (EConstr.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in let ff' = dump_formula formula_typ (dump_cstr spec.typ spec.dump_coeff) ff' in Feedback.msg_notice (Printer.pr_leconstr_env gl.env gl.sigma ff'); Printf.fprintf stdout "cnf : %a\n" (pp_cnf (fun o _ -> ())) cnf_ff' end; (* Even if it does not work, this does not mean it is not provable -- the prover is REALLY incomplete *) (* if debug then begin (* recompute the proofs *) match witness_list_tags prover cnf_ff' with | None -> failwith "abstraction is wrong" | Some res -> () end ; *) let res' = compact_proofs cnf_ff res cnf_ff' in let (ff',res',ids) = (ff',res', ids_of_formula ff') in let res' = dump_list (spec.proof_typ) spec.dump_proof res' in Some (ids,ff',res') (** * Parse the proof environment, and call micromega_tauto *) let fresh_id avoid id gl = Tactics.fresh_id_in_env avoid id (Proofview.Goal.env gl) let micromega_gen parse_arith (negate:'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) unsat deduce spec dumpexpr prover tac = Proofview.Goal.nf_enter begin fun gl -> let sigma = Tacmach.New.project gl in let concl = Tacmach.New.pf_concl gl in let hyps = Tacmach.New.pf_hyps_types gl in try let gl0 = { env = Tacmach.New.pf_env gl; sigma } in let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let dumpexpr = Lazy.force dumpexpr in match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl0 with | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness") | Some (ids,ff',res') -> let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma dumpexpr ff' in let intro (id,_) = Tactics.introduction id in let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; micromega_order_change spec res' (EConstr.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env' ff_arith ] in let goal_props = List.rev (prop_env_of_formula sigma ff') in let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.New.tclTHEN (Tactics.keep []) ((*Tactics.tclABSTRACT None*) (Tacticals.New.tclTHEN tac_arith tac)) in Tacticals.New.tclTHENS (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal) [ kill_arith; (Tacticals.New.tclTHENLIST [(Tactics.generalize (List.map EConstr.mkVar ids)); Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args)) ] ) ] with | ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment") | Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout") | CsdpNotFound -> flush stdout ; Tacticals.New.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) end let micromega_gen parse_arith (negate:'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) unsat deduce spec prover = (micromega_gen parse_arith negate normalise unsat deduce spec prover) let micromega_order_changer cert env ff = (*let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let coeff = Lazy.force coq_Rcst in let dump_coeff = dump_Rcst in let typ = Lazy.force coq_R in let cert_typ = (EConstr.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in let formula_typ = (EConstr.mkApp (Lazy.force coq_Cstr,[| coeff|])) in let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in let vm = dump_varmap (typ) (vm_of_list env) in Proofview.Goal.nf_enter begin fun gl -> Tacticals.New.tclTHENLIST [ (Tactics.change_concl (set [ ("__ff", ff, EConstr.mkApp(Lazy.force coq_Formula, [|formula_typ |])); ("__varmap", vm, EConstr.mkApp (gen_constant_in_modules "VarMap" [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|])); ("__wit", cert, cert_typ) ] (Tacmach.New.pf_concl gl))); (* Tacticals.New.tclTHENLIST (List.map (fun id -> (Tactics.introduction id)) ids)*) ] end let micromega_genr prover tac = let parse_arith = parse_rarith in let negate = Mc.rnegate in let normalise = Mc.rnormalise in let unsat = Mc.runsat in let deduce = Mc.rdeduce in let spec = lazy { typ = Lazy.force coq_R; coeff = Lazy.force coq_Rcst; dump_coeff = dump_q; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q } in Proofview.Goal.nf_enter begin fun gl -> let sigma = Tacmach.New.project gl in let concl = Tacmach.New.pf_concl gl in let hyps = Tacmach.New.pf_hyps_types gl in try let gl0 = { env = Tacmach.New.pf_env gl; sigma } in let (hyps,concl,env) = parse_goal gl0 parse_arith Env.empty hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl0 with | None -> Tacticals.New.tclFAIL 0 (Pp.str " Cannot find witness") | Some (ids,ff',res') -> let (ff,ids) = formula_hyps_concl (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in let ff' = abstract_wrt_formula ff' ff in let (arith_goal,props,vars,ff_arith) = make_goal_of_formula sigma (Lazy.force dump_rexpr) ff' in let intro (id,_) = Tactics.introduction id in let intro_vars = Tacticals.New.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.New.tclTHENLIST (List.map intro props) in let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id,i) -> EConstr.mkVar id,i) vars in let tac_arith = Tacticals.New.tclTHENLIST [ intro_props ; intro_vars ; micromega_order_changer res' env' ff_arith ] in let goal_props = List.rev (prop_env_of_formula sigma ff') in let goal_vars = List.map (fun (_,i) -> List.nth env (i-1)) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.New.tclTHEN (Tactics.keep []) ((*Tactics.tclABSTRACT None*) (Tacticals.New.tclTHEN tac_arith tac)) in Tacticals.New.tclTHENS (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal) [ kill_arith; (Tacticals.New.tclTHENLIST [(Tactics.generalize (List.map EConstr.mkVar ids)); Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args)) ] ) ] with | ParseError -> Tacticals.New.tclFAIL 0 (Pp.str "Bad logical fragment") | Mfourier.TimeOut -> Tacticals.New.tclFAIL 0 (Pp.str "Timeout") | CsdpNotFound -> flush stdout ; Tacticals.New.tclFAIL 0 (Pp.str (" Skipping what remains of this tactic: the complexity of the goal requires " ^ "the use of a specialized external tool called csdp. \n\n" ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n" ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) end let micromega_genr prover = (micromega_genr prover) let lift_ratproof prover l = match prover l with | None -> None | Some c -> Some (Mc.RatProof( c,Mc.DoneProof)) type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list [@@@ocaml.warning "-37"] type csdp_certificate = S of Sos_types.positivstellensatz option | F of string (* Used to read the result of the execution of csdpcert *) type provername = string * int option (** * The caching mechanism. *) open Persistent_cache module Cache = PHashtable(struct type t = (provername * micromega_polys) let equal = Pervasives.(=) let hash = Hashtbl.hash end) let csdp_cache = ".csdp.cache" (** * Build the command to call csdpcert, and launch it. This in turn will call * the sos driver to the csdp executable. * Throw CsdpNotFound if Coq isn't aware of any csdp executable. *) let require_csdp = if System.is_in_system_path "csdp" then lazy () else lazy (raise CsdpNotFound) let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option = fun provername poly -> Lazy.force require_csdp; let cmdname = List.fold_left Filename.concat (Envars.coqlib ()) ["plugins"; "micromega"; "csdpcert" ^ Coq_config.exec_extension] in match ((command cmdname [|cmdname|] (provername,poly)) : csdp_certificate) with | F str -> failwith str | S res -> res (** * Check the cache before calling the prover. *) let xcall_csdpcert = Cache.memo csdp_cache (fun (prover,pb) -> really_call_csdpcert prover pb) (** * Prover callback functions. *) let call_csdpcert prover pb = xcall_csdpcert (prover,pb) let rec z_to_q_pol e = match e with | Mc.Pc z -> Mc.Pc {Mc.qnum = z ; Mc.qden = Mc.XH} | Mc.Pinj(p,pol) -> Mc.Pinj(p,z_to_q_pol pol) | Mc.PX(pol1,p,pol2) -> Mc.PX(z_to_q_pol pol1, p, z_to_q_pol pol2) let call_csdpcert_q provername poly = match call_csdpcert provername poly with | None -> None | Some cert -> let cert = Certificate.q_cert_of_pos cert in if Mc.qWeakChecker poly cert then Some cert else ((print_string "buggy certificate") ;None) let call_csdpcert_z provername poly = let l = List.map (fun (e,o) -> (z_to_q_pol e,o)) poly in match call_csdpcert provername l with | None -> None | Some cert -> let cert = Certificate.z_cert_of_pos cert in if Mc.zWeakChecker poly cert then Some cert else ((print_string "buggy certificate" ; flush stdout) ;None) let xhyps_of_cone base acc prf = let rec xtract e acc = match e with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc | Mc.PsatzIn n -> let n = (CoqToCaml.nat n) in if n >= base then ISet.add (n-base) acc else acc | Mc.PsatzMulC(_,c) -> xtract c acc | Mc.PsatzAdd(e1,e2) | Mc.PsatzMulE(e1,e2) -> xtract e1 (xtract e2 acc) in xtract prf acc let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf let compact_cone prf f = let np n = CamlToCoq.nat (f (CoqToCaml.nat n)) in let rec xinterp prf = match prf with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf | Mc.PsatzIn n -> Mc.PsatzIn (np n) | Mc.PsatzMulC(e,c) -> Mc.PsatzMulC(e,xinterp c) | Mc.PsatzAdd(e1,e2) -> Mc.PsatzAdd(xinterp e1,xinterp e2) | Mc.PsatzMulE(e1,e2) -> Mc.PsatzMulE(xinterp e1,xinterp e2) in xinterp prf let hyps_of_pt pt = let rec xhyps base pt acc = match pt with | Mc.DoneProof -> acc | Mc.RatProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.CutProof(c,pt) -> xhyps (base+1) pt (xhyps_of_cone base acc c) | Mc.EnumProof(c1,c2,l) -> let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in List.fold_left (fun s x -> xhyps (base + 1) x s) s l in xhyps 0 pt ISet.empty let hyps_of_pt pt = let res = hyps_of_pt pt in if debug then (Printf.fprintf stdout "\nhyps_of_pt : %a -> " pp_proof_term pt ; ISet.iter (fun i -> Printf.printf "%i " i) res); res let compact_pt pt f = let translate ofset x = if x < ofset then x else (f (x-ofset) + ofset) in let rec compact_pt ofset pt = match pt with | Mc.DoneProof -> Mc.DoneProof | Mc.RatProof(c,pt) -> Mc.RatProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.CutProof(c,pt) -> Mc.CutProof(compact_cone c (translate (ofset)), compact_pt (ofset+1) pt ) | Mc.EnumProof(c1,c2,l) -> Mc.EnumProof(compact_cone c1 (translate (ofset)), compact_cone c2 (translate (ofset)), Mc.map (fun x -> compact_pt (ofset+1) x) l) in compact_pt 0 pt (** * Definition of provers. * Instantiates the type ('a,'prf) prover defined above. *) let lift_pexpr_prover p l = p (List.map (fun (e,o) -> Mc.denorm e , o) l) module CacheZ = PHashtable(struct type prover_option = bool * int type t = prover_option * ((Mc.z Mc.pol * Mc.op1) list) let equal = (=) let hash = Hashtbl.hash end) module CacheQ = PHashtable(struct type t = int * ((Mc.q Mc.pol * Mc.op1) list) let equal = (=) let hash = Hashtbl.hash end) let memo_zlinear_prover = CacheZ.memo ".lia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.lia ce b) s) let memo_nlia = CacheZ.memo ".nia.cache" (fun ((ce,b),s) -> lift_pexpr_prover (Certificate.nlia ce b) s) let memo_nra = CacheQ.memo ".nra.cache" (fun (o,s) -> lift_pexpr_prover (Certificate.nlinear_prover o) s) let linear_prover_Q = { name = "linear prover"; get_option = get_lra_option ; prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let linear_prover_R = { name = "linear prover"; get_option = get_lra_option ; prover = (fun (o,l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o Certificate.q_spec) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let nlinear_prover_R = { name = "nra"; get_option = get_lra_option; prover = memo_nra ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Q str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> call_csdpcert_q o l); hyps = hyps_of_cone; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_R str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> call_csdpcert_q o l); hyps = hyps_of_cone; compact = compact_cone; pp_prf = pp_psatz pp_q; pp_f = fun o x -> pp_pol pp_q o (fst x) } let non_linear_prover_Z str o = { name = "real nonlinear prover"; get_option = (fun () -> (str,o)); prover = (fun (o,l) -> lift_ratproof (call_csdpcert_z o) l); hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let linear_Z = { name = "lia"; get_option = get_lia_option; prover = memo_zlinear_prover ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } let nlinear_Z = { name = "nlia"; get_option = get_lia_option; prover = memo_nlia ; hyps = hyps_of_pt; compact = compact_pt; pp_prf = pp_proof_term; pp_f = fun o x -> pp_pol pp_z o (fst x) } (** * Functions instantiating micromega_gen with the appropriate theories and * solvers *) let lra_Q = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ linear_prover_Q ] let psatz_Q i = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] let lra_R = micromega_genr [ linear_prover_R ] let psatz_R i = micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] let psatz_Z i = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] let sos_Z = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ non_linear_prover_Z "pure_sos" None ] let sos_Q = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ non_linear_prover_Q "pure_sos" None ] let sos_R = micromega_genr [ non_linear_prover_R "pure_sos" None ] let xlia = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ linear_Z ] let xnlia = micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec dump_zexpr [ nlinear_Z ] let nra = micromega_genr [ nlinear_prover_R ] let nqa = micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec dump_qexpr [ nlinear_prover_R ] (* Local Variables: *) (* coding: utf-8 *) (* End: *)