(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* R -> R) (ropp : R -> R). Variable req rle rlt : R -> R -> Prop. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (rplus x y). Notation "x * y " := (rtimes x y). Notation "x - y " := (rminus x y). Notation "- x" := (ropp x). Notation "x == y" := (req x y). Notation "x ~= y" := (~ req x y). Notation "x <= y" := (rle x y). Notation "x < y" := (rlt x y). Record SOR : Type := mk_SOR_theory { SORsetoid : Setoid_Theory R req; SORplus_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2; SORtimes_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2; SORopp_wd : forall x1 x2, x1 == x2 -> -x1 == -x2; SORle_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> (x1 <= y1 <-> x2 <= y2); SORlt_wd : forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> (x1 < y1 <-> x2 < y2); SORrt : ring_theory rO rI rplus rtimes rminus ropp req; SORle_refl : forall n : R, n <= n; SORle_antisymm : forall n m : R, n <= m -> m <= n -> n == m; SORle_trans : forall n m p : R, n <= m -> m <= p -> n <= p; SORlt_le_neq : forall n m : R, n < m <-> n <= m /\ n ~= m; SORlt_trichotomy : forall n m : R, n < m \/ n == m \/ m < n; SORplus_le_mono_l : forall n m p : R, n <= m -> p + n <= p + m; SORtimes_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n * m; SORneq_0_1 : 0 ~= 1 }. (* We cannot use Relation_Definitions.order.ord_antisym and Relations_1.Antisymmetric because they refer to Leibniz equality *) End DEFINITIONS. Section STRICT_ORDERED_RING. Variable R : Type. Variable (rO rI : R) (rplus rtimes rminus: R -> R -> R) (ropp : R -> R). Variable req rle rlt : R -> R -> Prop. Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt. Notation "0" := rO. Notation "1" := rI. Notation "x + y" := (rplus x y). Notation "x * y " := (rtimes x y). Notation "x - y " := (rminus x y). Notation "- x" := (ropp x). Notation "x == y" := (req x y). Notation "x ~= y" := (~ req x y). Notation "x <= y" := (rle x y). Notation "x < y" := (rlt x y). Add Relation R req reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _) symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _) transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _) as sor_setoid. Add Morphism rplus with signature req ==> req ==> req as rplus_morph. Proof. exact sor.(SORplus_wd). Qed. Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph. Proof. exact sor.(SORtimes_wd). Qed. Add Morphism ropp with signature req ==> req as ropp_morph. Proof. exact sor.(SORopp_wd). Qed. Add Morphism rle with signature req ==> req ==> iff as rle_morph. Proof. exact sor.(SORle_wd). Qed. Add Morphism rlt with signature req ==> req ==> iff as rlt_morph. Proof. exact sor.(SORlt_wd). Qed. Add Ring SOR : sor.(SORrt). Add Morphism rminus with signature req ==> req ==> req as rminus_morph. Proof. intros x1 x2 H1 y1 y2 H2. rewrite (sor.(SORrt).(Rsub_def) x1 y1). rewrite (sor.(SORrt).(Rsub_def) x2 y2). rewrite H1; now rewrite H2. Qed. Theorem Rneq_symm : forall n m : R, n ~= m -> m ~= n. Proof. intros n m H1 H2; rewrite H2 in H1; now apply H1. Qed. (* Propeties of plus, minus and opp *) Theorem Rplus_0_l : forall n : R, 0 + n == n. Proof. intro; ring. Qed. Theorem Rplus_0_r : forall n : R, n + 0 == n. Proof. intro; ring. Qed. Theorem Rtimes_0_r : forall n : R, n * 0 == 0. Proof. intro; ring. Qed. Theorem Rplus_comm : forall n m : R, n + m == m + n. Proof. intros; ring. Qed. Theorem Rtimes_0_l : forall n : R, 0 * n == 0. Proof. intro; ring. Qed. Theorem Rtimes_comm : forall n m : R, n * m == m * n. Proof. intros; ring. Qed. Theorem Rminus_eq_0 : forall n m : R, n - m == 0 <-> n == m. Proof. intros n m. split; intro H. setoid_replace n with ((n - m) + m) by ring. rewrite H. now rewrite Rplus_0_l. rewrite H; ring. Qed. Theorem Rplus_cancel_l : forall n m p : R, p + n == p + m <-> n == m. Proof. intros n m p; split; intro H. setoid_replace n with (- p + (p + n)) by ring. setoid_replace m with (- p + (p + m)) by ring. now rewrite H. now rewrite H. Qed. (* Relations *) Theorem Rle_refl : forall n : R, n <= n. Proof sor.(SORle_refl). Theorem Rle_antisymm : forall n m : R, n <= m -> m <= n -> n == m. Proof sor.(SORle_antisymm). Theorem Rle_trans : forall n m p : R, n <= m -> m <= p -> n <= p. Proof sor.(SORle_trans). Theorem Rlt_trichotomy : forall n m : R, n < m \/ n == m \/ m < n. Proof sor.(SORlt_trichotomy). Theorem Rlt_le_neq : forall n m : R, n < m <-> n <= m /\ n ~= m. Proof sor.(SORlt_le_neq). Theorem Rneq_0_1 : 0 ~= 1. Proof sor.(SORneq_0_1). Theorem Req_em : forall n m : R, n == m \/ n ~= m. Proof. intros n m. destruct (Rlt_trichotomy n m) as [H | [H | H]]; try rewrite Rlt_le_neq in H. right; now destruct H. now left. right; apply Rneq_symm; now destruct H. Qed. Theorem Req_dne : forall n m : R, ~ ~ n == m <-> n == m. Proof. intros n m; destruct (Req_em n m) as [H | H]. split; auto. split. intro H1; false_hyp H H1. auto. Qed. Theorem Rle_lt_eq : forall n m : R, n <= m <-> n < m \/ n == m. Proof. intros n m; rewrite Rlt_le_neq. split; [intro H | intros [[H1 H2] | H]]. destruct (Req_em n m) as [H1 | H1]. now right. left; now split. assumption. rewrite H; apply Rle_refl. Qed. Ltac le_less := rewrite Rle_lt_eq; left; try assumption. Ltac le_equal := rewrite Rle_lt_eq; right; try reflexivity; try assumption. Ltac le_elim H := rewrite Rle_lt_eq in H; destruct H as [H | H]. Theorem Rlt_trans : forall n m p : R, n < m -> m < p -> n < p. Proof. intros n m p; repeat rewrite Rlt_le_neq; intros [H1 H2] [H3 H4]; split. now apply Rle_trans with m. intro H. rewrite H in H1. pose proof (Rle_antisymm H3 H1). now apply H4. Qed. Theorem Rle_lt_trans : forall n m p : R, n <= m -> m < p -> n < p. Proof. intros n m p H1 H2; le_elim H1. now apply Rlt_trans with (m := m). now rewrite H1. Qed. Theorem Rlt_le_trans : forall n m p : R, n < m -> m <= p -> n < p. Proof. intros n m p H1 H2; le_elim H2. now apply Rlt_trans with (m := m). now rewrite <- H2. Qed. Theorem Rle_gt_cases : forall n m : R, n <= m \/ m < n. Proof. intros n m; destruct (Rlt_trichotomy n m) as [H | [H | H]]. left; now le_less. left; now le_equal. now right. Qed. Theorem Rlt_neq : forall n m : R, n < m -> n ~= m. Proof. intros n m; rewrite Rlt_le_neq; now intros [_ H]. Qed. Theorem Rle_ngt : forall n m : R, n <= m <-> ~ m < n. Proof. intros n m; split. intros H H1; assert (H2 : n < n) by now apply Rle_lt_trans with m. now apply (Rlt_neq H2). intro H. destruct (Rle_gt_cases n m) as [H1 | H1]. assumption. false_hyp H1 H. Qed. Theorem Rlt_nge : forall n m : R, n < m <-> ~ m <= n. Proof. intros n m; split. intros H H1; assert (H2 : n < n) by now apply Rlt_le_trans with m. now apply (Rlt_neq H2). intro H. destruct (Rle_gt_cases m n) as [H1 | H1]. false_hyp H1 H. assumption. Qed. (* Plus, minus and order *) Theorem Rplus_le_mono_l : forall n m p : R, n <= m <-> p + n <= p + m. Proof. intros n m p; split. apply sor.(SORplus_le_mono_l). intro H. apply (sor.(SORplus_le_mono_l) (p + n) (p + m) (- p)) in H. setoid_replace (- p + (p + n)) with n in H by ring. setoid_replace (- p + (p + m)) with m in H by ring. assumption. Qed. Theorem Rplus_le_mono_r : forall n m p : R, n <= m <-> n + p <= m + p. Proof. intros n m p; rewrite (Rplus_comm n p); rewrite (Rplus_comm m p). apply Rplus_le_mono_l. Qed. Theorem Rplus_lt_mono_l : forall n m p : R, n < m <-> p + n < p + m. Proof. intros n m p; do 2 rewrite Rlt_le_neq. rewrite Rplus_cancel_l. now rewrite <- Rplus_le_mono_l. Qed. Theorem Rplus_lt_mono_r : forall n m p : R, n < m <-> n + p < m + p. Proof. intros n m p. rewrite (Rplus_comm n p); rewrite (Rplus_comm m p); apply Rplus_lt_mono_l. Qed. Theorem Rplus_lt_mono : forall n m p q : R, n < m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply Rlt_trans with (m + p); [now apply -> Rplus_lt_mono_r | now apply -> Rplus_lt_mono_l]. Qed. Theorem Rplus_le_mono : forall n m p q : R, n <= m -> p <= q -> n + p <= m + q. Proof. intros n m p q H1 H2. apply Rle_trans with (m + p); [now apply -> Rplus_le_mono_r | now apply -> Rplus_le_mono_l]. Qed. Theorem Rplus_lt_le_mono : forall n m p q : R, n < m -> p <= q -> n + p < m + q. Proof. intros n m p q H1 H2. apply Rlt_le_trans with (m + p); [now apply -> Rplus_lt_mono_r | now apply -> Rplus_le_mono_l]. Qed. Theorem Rplus_le_lt_mono : forall n m p q : R, n <= m -> p < q -> n + p < m + q. Proof. intros n m p q H1 H2. apply Rle_lt_trans with (m + p); [now apply -> Rplus_le_mono_r | now apply -> Rplus_lt_mono_l]. Qed. Theorem Rplus_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_lt_mono. Qed. Theorem Rplus_pos_nonneg : forall n m : R, 0 < n -> 0 <= m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_lt_le_mono. Qed. Theorem Rplus_nonneg_pos : forall n m : R, 0 <= n -> 0 < m -> 0 < n + m. Proof. intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_le_lt_mono. Qed. Theorem Rplus_nonneg_nonneg : forall n m : R, 0 <= n -> 0 <= m -> 0 <= n + m. Proof. intros n m H1 H2. rewrite <- (Rplus_0_l 0). now apply Rplus_le_mono. Qed. Theorem Rle_le_minus : forall n m : R, n <= m <-> 0 <= m - n. Proof. intros n m. rewrite (@Rplus_le_mono_r n m (- n)). setoid_replace (n + - n) with 0 by ring. now setoid_replace (m + - n) with (m - n) by ring. Qed. Theorem Rlt_lt_minus : forall n m : R, n < m <-> 0 < m - n. Proof. intros n m. rewrite (@Rplus_lt_mono_r n m (- n)). setoid_replace (n + - n) with 0 by ring. now setoid_replace (m + - n) with (m - n) by ring. Qed. Theorem Ropp_lt_mono : forall n m : R, n < m <-> - m < - n. Proof. intros n m. split; intro H. apply -> (@Rplus_lt_mono_l n m (- n - m)) in H. setoid_replace (- n - m + n) with (- m) in H by ring. now setoid_replace (- n - m + m) with (- n) in H by ring. apply -> (@Rplus_lt_mono_l (- m) (- n) (n + m)) in H. setoid_replace (n + m + - m) with n in H by ring. now setoid_replace (n + m + - n) with m in H by ring. Qed. Theorem Ropp_pos_neg : forall n : R, 0 < - n <-> n < 0. Proof. intro n; rewrite (Ropp_lt_mono n 0). now setoid_replace (- 0) with 0 by ring. Qed. (* Times and order *) Theorem Rtimes_pos_pos : forall n m : R, 0 < n -> 0 < m -> 0 < n * m. Proof sor.(SORtimes_pos_pos). Theorem Rtimes_nonneg_nonneg : forall n m : R, 0 <= n -> 0 <= m -> 0 <= n * m. Proof. intros n m H1 H2. le_elim H1. le_elim H2. le_less; now apply Rtimes_pos_pos. rewrite <- H2; rewrite Rtimes_0_r; le_equal. rewrite <- H1; rewrite Rtimes_0_l; le_equal. Qed. Theorem Rtimes_pos_neg : forall n m : R, 0 < n -> m < 0 -> n * m < 0. Proof. intros n m H1 H2. apply -> Ropp_pos_neg. setoid_replace (- (n * m)) with (n * (- m)) by ring. apply Rtimes_pos_pos. assumption. now apply <- Ropp_pos_neg. Qed. Theorem Rtimes_neg_neg : forall n m : R, n < 0 -> m < 0 -> 0 < n * m. Proof. intros n m H1 H2. setoid_replace (n * m) with ((- n) * (- m)) by ring. apply Rtimes_pos_pos; now apply <- Ropp_pos_neg. Qed. Theorem Rtimes_square_nonneg : forall n : R, 0 <= n * n. Proof. intro n; destruct (Rlt_trichotomy 0 n) as [H | [H | H]]. le_less; now apply Rtimes_pos_pos. rewrite <- H, Rtimes_0_l; le_equal. le_less; now apply Rtimes_neg_neg. Qed. Theorem Rtimes_neq_0 : forall n m : R, n ~= 0 /\ m ~= 0 -> n * m ~= 0. Proof. intros n m [H1 H2]. destruct (Rlt_trichotomy n 0) as [H3 | [H3 | H3]]; destruct (Rlt_trichotomy m 0) as [H4 | [H4 | H4]]; try (false_hyp H3 H1); try (false_hyp H4 H2). apply Rneq_symm. apply Rlt_neq. now apply Rtimes_neg_neg. apply Rlt_neq. rewrite Rtimes_comm. now apply Rtimes_pos_neg. apply Rlt_neq. now apply Rtimes_pos_neg. apply Rneq_symm. apply Rlt_neq. now apply Rtimes_pos_pos. Qed. (* The following theorems are used to build a morphism from Z to R and prove its properties in ZCoeff.v. They are not used in RingMicromega.v. *) (* Surprisingly, multilication is needed to prove the following theorem *) Theorem Ropp_neg_pos : forall n : R, - n < 0 <-> 0 < n. Proof. intro n; setoid_replace n with (- - n) by ring. rewrite Ropp_pos_neg. now setoid_replace (- - n) with n by ring. Qed. Theorem Rlt_0_1 : 0 < 1. Proof. apply <- Rlt_le_neq. split. setoid_replace 1 with (1 * 1) by ring. apply Rtimes_square_nonneg. apply Rneq_0_1. Qed. Theorem Rlt_succ_r : forall n : R, n < 1 + n. Proof. intro n. rewrite <- (Rplus_0_l n); setoid_replace (1 + (0 + n)) with (1 + n) by ring. apply -> Rplus_lt_mono_r. apply Rlt_0_1. Qed. Theorem Rlt_lt_succ : forall n m : R, n < m -> n < 1 + m. Proof. intros n m H; apply Rlt_trans with m. assumption. apply Rlt_succ_r. Qed. (*Theorem Rtimes_lt_mono_pos_l : forall n m p : R, 0 < p -> n < m -> p * n < p * m. Proof. intros n m p H1 H2. apply <- Rlt_lt_minus. setoid_replace (p * m - p * n) with (p * (m - n)) by ring. apply Rtimes_pos_pos. assumption. now apply -> Rlt_lt_minus. Qed.*) End STRICT_ORDERED_RING.