(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* anomaly (str "Global reference " ++ str s ++ str " not found in generalized rewriting") let find_reference dir s = let gr = lazy (try_find_global_reference dir s) in fun () -> Lazy.force gr type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *) let find_global dir s = let gr = lazy (try_find_global_reference dir s) in fun (evd,cstrs) -> let sigma = Sigma.Unsafe.of_evar_map evd in let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force gr) in let evd = Sigma.to_evar_map sigma in (evd, cstrs), c (** Utility for dealing with polymorphic applications *) (** Global constants. *) let coq_eq_ref = find_reference ["Init"; "Logic"] "eq" let coq_eq = find_global ["Init"; "Logic"] "eq" let coq_f_equal = find_global ["Init"; "Logic"] "f_equal" let coq_all = find_global ["Init"; "Logic"] "all" let impl = find_global ["Program"; "Basics"] "impl" (** Bookkeeping which evars are constraints so that we can remove them at the end of the tactic. *) let goalevars evars = fst evars let cstrevars evars = snd evars let new_cstr_evar (evd,cstrs) env t = let s = Typeclasses.set_resolvable Evd.Store.empty false in let evd = Sigma.Unsafe.of_evar_map evd in let Sigma (t, evd', _) = Evarutil.new_evar ~store:s env evd t in let evd' = Sigma.to_evar_map evd' in let ev, _ = destEvar t in (evd', Evar.Set.add ev cstrs), t (** Building or looking up instances. *) let e_new_cstr_evar env evars t = let evd', t = new_cstr_evar !evars env t in evars := evd'; t (** Building or looking up instances. *) let extends_undefined evars evars' = let f ev evi found = found || not (Evd.mem evars ev) in fold_undefined f evars' false let app_poly_check env evars f args = let (evars, cstrs), fc = f evars in let evdref = ref evars in let t = Typing.e_solve_evars env evdref (mkApp (fc, args)) in (!evdref, cstrs), t let app_poly_nocheck env evars f args = let evars, fc = f evars in evars, mkApp (fc, args) let app_poly_sort b = if b then app_poly_nocheck else app_poly_check let find_class_proof proof_type proof_method env evars carrier relation = try let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in let evars', c = Typeclasses.resolve_one_typeclass env (goalevars evars) goal in if extends_undefined (goalevars evars) evars' then raise Not_found else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |] with e when Logic.catchable_exception e -> raise Not_found (** Utility functions *) module GlobalBindings (M : sig val relation_classes : string list val morphisms : string list val relation : string list * string val app_poly : env -> evars -> (evars -> evars * constr) -> constr array -> evars * constr val arrow : evars -> evars * constr end) = struct open M open Context.Rel.Declaration let relation : evars -> evars * constr = find_global (fst relation) (snd relation) let reflexive_type = find_global relation_classes "Reflexive" let reflexive_proof = find_global relation_classes "reflexivity" let symmetric_type = find_global relation_classes "Symmetric" let symmetric_proof = find_global relation_classes "symmetry" let transitive_type = find_global relation_classes "Transitive" let transitive_proof = find_global relation_classes "transitivity" let forall_relation = find_global morphisms "forall_relation" let pointwise_relation = find_global morphisms "pointwise_relation" let forall_relation_ref = find_reference morphisms "forall_relation" let pointwise_relation_ref = find_reference morphisms "pointwise_relation" let respectful = find_global morphisms "respectful" let respectful_ref = find_reference morphisms "respectful" let default_relation = find_global ["Classes"; "SetoidTactics"] "DefaultRelation" let coq_forall = find_global morphisms "forall_def" let subrelation = find_global relation_classes "subrelation" let do_subrelation = find_global morphisms "do_subrelation" let apply_subrelation = find_global morphisms "apply_subrelation" let rewrite_relation_class = find_global relation_classes "RewriteRelation" let proper_class = lazy (class_info (try_find_global_reference morphisms "Proper")) let proper_proxy_class = lazy (class_info (try_find_global_reference morphisms "ProperProxy")) let proper_proj = lazy (mkConst (Option.get (pi3 (List.hd (Lazy.force proper_class).cl_projs)))) let proper_type = let l = lazy (Lazy.force proper_class).cl_impl in fun (evd,cstrs) -> let sigma = Sigma.Unsafe.of_evar_map evd in let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force l) in let evd = Sigma.to_evar_map sigma in (evd, cstrs), c let proper_proxy_type = let l = lazy (Lazy.force proper_proxy_class).cl_impl in fun (evd,cstrs) -> let sigma = Sigma.Unsafe.of_evar_map evd in let Sigma (c, sigma, _) = Evarutil.new_global sigma (Lazy.force l) in let evd = Sigma.to_evar_map sigma in (evd, cstrs), c let proper_proof env evars carrier relation x = let evars, goal = app_poly env evars proper_proxy_type [| carrier ; relation; x |] in new_cstr_evar evars env goal let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env let get_transitive_proof env = find_class_proof transitive_type transitive_proof env let mk_relation env evd a = app_poly env evd relation [| a |] (** Build an infered signature from constraints on the arguments and expected output relation *) let build_signature evars env m (cstrs : (types * types option) option list) (finalcstr : (types * types option) option) = let mk_relty evars newenv ty obj = match obj with | None | Some (_, None) -> let evars, relty = mk_relation env evars ty in if closed0 ty then let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in new_cstr_evar evars env' relty else new_cstr_evar evars newenv relty | Some (x, Some rel) -> evars, rel in let rec aux env evars ty l = let t = Reductionops.whd_all env (goalevars evars) ty in match kind_of_term t, l with | Prod (na, ty, b), obj :: cstrs -> let b = Reductionops.nf_betaiota (goalevars evars) b in if noccurn 1 b (* non-dependent product *) then let ty = Reductionops.nf_betaiota (goalevars evars) ty in let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in let evars, relty = mk_relty evars env ty obj in let evars, newarg = app_poly env evars respectful [| ty ; b' ; relty ; arg |] in evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs else let (evars, b, arg, cstrs) = aux (Environ.push_rel (LocalAssum (na, ty)) env) evars b cstrs in let ty = Reductionops.nf_betaiota (goalevars evars) ty in let pred = mkLambda (na, ty, b) in let liftarg = mkLambda (na, ty, arg) in let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs else error "build_signature: no constraint can apply on a dependent argument" | _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products") | _, [] -> (match finalcstr with | None | Some (_, None) -> let t = Reductionops.nf_betaiota (fst evars) ty in let evars, rel = mk_relty evars env t None in evars, t, rel, [t, Some rel] | Some (t, Some rel) -> evars, t, rel, [t, Some rel]) in aux env evars m cstrs (** Folding/unfolding of the tactic constants. *) let unfold_impl t = match kind_of_term t with | App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) -> mkProd (Anonymous, a, lift 1 b) | _ -> assert false let unfold_all t = match kind_of_term t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match kind_of_term b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let unfold_forall t = match kind_of_term t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match kind_of_term b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let arrow_morphism env evd ta tb a b = let ap = is_Prop ta and bp = is_Prop tb in if ap && bp then app_poly env evd impl [| a; b |], unfold_impl else if ap then (* Domain in Prop, CoDomain in Type *) (app_poly env evd arrow [| a; b |]), unfold_impl (* (evd, mkProd (Anonymous, a, b)), (fun x -> x) *) else if bp then (* Dummy forall *) (app_poly env evd coq_all [| a; mkLambda (Anonymous, a, lift 1 b) |]), unfold_forall else (* None in Prop, use arrow *) (app_poly env evd arrow [| a; b |]), unfold_impl let rec decomp_pointwise n c = if Int.equal n 0 then c else match kind_of_term c with | App (f, [| a; b; relb |]) when Globnames.is_global (pointwise_relation_ref ()) f -> decomp_pointwise (pred n) relb | App (f, [| a; b; arelb |]) when Globnames.is_global (forall_relation_ref ()) f -> decomp_pointwise (pred n) (Reductionops.beta_applist (arelb, [mkRel 1])) | _ -> invalid_arg "decomp_pointwise" let rec apply_pointwise rel = function | arg :: args -> (match kind_of_term rel with | App (f, [| a; b; relb |]) when Globnames.is_global (pointwise_relation_ref ()) f -> apply_pointwise relb args | App (f, [| a; b; arelb |]) when Globnames.is_global (forall_relation_ref ()) f -> apply_pointwise (Reductionops.beta_applist (arelb, [arg])) args | _ -> invalid_arg "apply_pointwise") | [] -> rel let pointwise_or_dep_relation env evd n t car rel = if noccurn 1 car && noccurn 1 rel then app_poly env evd pointwise_relation [| t; lift (-1) car; lift (-1) rel |] else app_poly env evd forall_relation [| t; mkLambda (n, t, car); mkLambda (n, t, rel) |] let lift_cstr env evars (args : constr list) c ty cstr = let start evars env car = match cstr with | None | Some (_, None) -> let evars, rel = mk_relation env evars car in new_cstr_evar evars env rel | Some (ty, Some rel) -> evars, rel in let rec aux evars env prod n = if Int.equal n 0 then start evars env prod else match kind_of_term (Reduction.whd_all env prod) with | Prod (na, ty, b) -> if noccurn 1 b then let b' = lift (-1) b in let evars, rb = aux evars env b' (pred n) in app_poly env evars pointwise_relation [| ty; b'; rb |] else let evars, rb = aux evars (Environ.push_rel (LocalAssum (na, ty)) env) b (pred n) in app_poly env evars forall_relation [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |] | _ -> raise Not_found in let rec find env c ty = function | [] -> None | arg :: args -> try let evars, found = aux evars env ty (succ (List.length args)) in Some (evars, found, c, ty, arg :: args) with Not_found -> let ty = whd_all env ty in find env (mkApp (c, [| arg |])) (prod_applist ty [arg]) args in find env c ty args let unlift_cstr env sigma = function | None -> None | Some codom -> Some (decomp_pointwise 1 codom) (** Looking up declared rewrite relations (instances of [RewriteRelation]) *) let is_applied_rewrite_relation env sigma rels t = match kind_of_term t with | App (c, args) when Array.length args >= 2 -> let head = if isApp c then fst (destApp c) else c in if Globnames.is_global (coq_eq_ref ()) head then None else (try let params, args = Array.chop (Array.length args - 2) args in let env' = Environ.push_rel_context rels env in let sigma = Sigma.Unsafe.of_evar_map sigma in let Sigma ((evar, _), evars, _) = Evarutil.new_type_evar env' sigma Evd.univ_flexible in let evars = Sigma.to_evar_map evars in let evars, inst = app_poly env (evars,Evar.Set.empty) rewrite_relation_class [| evar; mkApp (c, params) |] in let _ = Typeclasses.resolve_one_typeclass env' (goalevars evars) inst in Some (it_mkProd_or_LetIn t rels) with e when CErrors.noncritical e -> None) | _ -> None end (* let my_type_of env evars c = Typing.e_type_of env evars c *) (* let mytypeofkey = Profile.declare_profile "my_type_of";; *) (* let my_type_of = Profile.profile3 mytypeofkey my_type_of *) let type_app_poly env env evd f args = let evars, c = app_poly_nocheck env evd f args in let evd', t = Typing.type_of env (goalevars evars) c in (evd', cstrevars evars), c module PropGlobal = struct module Consts = struct let relation_classes = ["Classes"; "RelationClasses"] let morphisms = ["Classes"; "Morphisms"] let relation = ["Relations";"Relation_Definitions"], "relation" let app_poly = app_poly_nocheck let arrow = find_global ["Program"; "Basics"] "arrow" let coq_inverse = find_global ["Program"; "Basics"] "flip" end module G = GlobalBindings(Consts) include G include Consts let inverse env evd car rel = type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |] (* app_poly env evd coq_inverse [| car ; car; mkProp; rel |] *) end module TypeGlobal = struct module Consts = struct let relation_classes = ["Classes"; "CRelationClasses"] let morphisms = ["Classes"; "CMorphisms"] let relation = relation_classes, "crelation" let app_poly = app_poly_check let arrow = find_global ["Classes"; "CRelationClasses"] "arrow" let coq_inverse = find_global ["Classes"; "CRelationClasses"] "flip" end module G = GlobalBindings(Consts) include G include Consts let inverse env (evd,cstrs) car rel = let sigma = Sigma.Unsafe.of_evar_map evd in let Sigma (sort, sigma, _) = Evarutil.new_Type ~rigid:Evd.univ_flexible env sigma in let evd = Sigma.to_evar_map sigma in app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |] end let sort_of_rel env evm rel = Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel) let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation (* let _ = *) (* Hook.set Equality.is_applied_rewrite_relation is_applied_rewrite_relation *) let split_head = function hd :: tl -> hd, tl | [] -> assert(false) let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') = pb == pb' || (ty == ty' && Constr.equal x x' && Constr.equal y y') let problem_inclusion x y = List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x let evd_convertible env evd x y = try (* Unfortunately, the_conv_x might say they are unifiable even if some unsolvable constraints remain, so we check that this unification does not introduce any new problem. *) let _, pbs = Evd.extract_all_conv_pbs evd in let evd' = Evarconv.the_conv_x env x y evd in let _, pbs' = Evd.extract_all_conv_pbs evd' in if evd' == evd || problem_inclusion pbs' pbs then Some evd' else None with e when CErrors.noncritical e -> None let convertible env evd x y = Reductionops.is_conv_leq env evd x y type hypinfo = { prf : constr; car : constr; rel : constr; sort : bool; (* true = Prop; false = Type *) c1 : constr; c2 : constr; holes : Clenv.hole list; } let get_symmetric_proof b = if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof let error_no_relation () = error "Cannot find a relation to rewrite." let rec decompose_app_rel env evd t = (** Head normalize for compatibility with the old meta mechanism *) let t = Reductionops.whd_betaiota evd t in match kind_of_term t with | App (f, [||]) -> assert false | App (f, [|arg|]) -> let (f', argl, argr) = decompose_app_rel env evd arg in let ty = Typing.unsafe_type_of env evd argl in let f'' = mkLambda (Name default_dependent_ident, ty, mkLambda (Name (Id.of_string "y"), lift 1 ty, mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |]))) in (f'', argl, argr) | App (f, args) -> let len = Array.length args in let fargs = Array.sub args 0 (Array.length args - 2) in let rel = mkApp (f, fargs) in rel, args.(len - 2), args.(len - 1) | _ -> error_no_relation () let decompose_app_rel env evd t = let (rel, t1, t2) = decompose_app_rel env evd t in let ty = Retyping.get_type_of env evd rel in let () = if not (Reduction.is_arity env ty) then error_no_relation () in (rel, t1, t2) let decompose_applied_relation env sigma (c,l) = let open Context.Rel.Declaration in let ctype = Retyping.get_type_of env sigma c in let find_rel ty = let sigma, cl = Clenv.make_evar_clause env sigma ty in let sigma = Clenv.solve_evar_clause env sigma true cl l in let { Clenv.cl_holes = holes; Clenv.cl_concl = t } = cl in let (equiv, c1, c2) = decompose_app_rel env sigma t in let ty1 = Retyping.get_type_of env sigma c1 in let ty2 = Retyping.get_type_of env sigma c2 in match evd_convertible env sigma ty1 ty2 with | None -> None | Some sigma -> let sort = sort_of_rel env sigma equiv in let args = Array.map_of_list (fun h -> h.Clenv.hole_evar) holes in let value = mkApp (c, args) in Some (sigma, { prf=value; car=ty1; rel = equiv; sort = Sorts.is_prop sort; c1=c1; c2=c2; holes }) in match find_rel ctype with | Some c -> c | None -> let ctx,t' = Reductionops.splay_prod env sigma ctype in (* Search for underlying eq *) match find_rel (it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx)) with | Some c -> c | None -> error "Cannot find an homogeneous relation to rewrite." let rewrite_db = "rewrite" let conv_transparent_state = (Id.Pred.empty, Cpred.full) let _ = Hints.add_hints_init (fun () -> Hints.create_hint_db false rewrite_db conv_transparent_state true) let rewrite_transparent_state () = Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db) let rewrite_core_unif_flags = { Unification.modulo_conv_on_closed_terms = None; Unification.use_metas_eagerly_in_conv_on_closed_terms = true; Unification.use_evars_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = empty_transparent_state; Unification.modulo_delta_types = full_transparent_state; Unification.check_applied_meta_types = true; Unification.use_pattern_unification = true; Unification.use_meta_bound_pattern_unification = true; Unification.frozen_evars = Evar.Set.empty; Unification.restrict_conv_on_strict_subterms = false; Unification.modulo_betaiota = false; Unification.modulo_eta = true; } (* Flags used for the setoid variant of "rewrite" and for the strategies "hints"/"old_hints"/"terms" of "rewrite_strat", and for solving pre-existing evars in "rewrite" (see unify_abs) *) let rewrite_unif_flags = let flags = rewrite_core_unif_flags in { Unification.core_unify_flags = flags; Unification.merge_unify_flags = flags; Unification.subterm_unify_flags = flags; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } let rewrite_core_conv_unif_flags = { rewrite_core_unif_flags with Unification.modulo_conv_on_closed_terms = Some conv_transparent_state; Unification.modulo_delta_types = conv_transparent_state; Unification.modulo_betaiota = true } (* Fallback flags for the setoid variant of "rewrite" *) let rewrite_conv_unif_flags = let flags = rewrite_core_conv_unif_flags in { Unification.core_unify_flags = flags; Unification.merge_unify_flags = flags; Unification.subterm_unify_flags = flags; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } (* Flags for "setoid_rewrite c"/"rewrite_strat -> c" *) let general_rewrite_unif_flags () = let ts = rewrite_transparent_state () in let core_flags = { rewrite_core_unif_flags with Unification.modulo_conv_on_closed_terms = Some ts; Unification.use_evars_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = ts; Unification.modulo_delta_types = full_transparent_state; Unification.modulo_betaiota = true } in { Unification.core_unify_flags = core_flags; Unification.merge_unify_flags = core_flags; Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = empty_transparent_state }; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } let refresh_hypinfo env sigma (is, cb) = let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma cb in let sigma, hypinfo = decompose_applied_relation env sigma cbl in let { c1; c2; car; rel; prf; sort; holes } = hypinfo in sigma, (car, rel, prf, c1, c2, holes, sort) (** FIXME: write this in the new monad interface *) let solve_remaining_by env sigma holes by = match by with | None -> sigma | Some tac -> let map h = if h.Clenv.hole_deps then None else let (evk, _) = destEvar (h.Clenv.hole_evar) in Some evk in (** Only solve independent holes *) let indep = List.map_filter map holes in let ist = { Geninterp.lfun = Id.Map.empty; extra = Geninterp.TacStore.empty } in let solve_tac = match tac with | Genarg.GenArg (Genarg.Glbwit tag, tac) -> Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ()) in let solve_tac = tclCOMPLETE solve_tac in let solve sigma evk = let evi = try Some (Evd.find_undefined sigma evk) with Not_found -> None in match evi with | None -> sigma (** Evar should not be defined, but just in case *) | Some evi -> let env = Environ.reset_with_named_context evi.evar_hyps env in let ty = evi.evar_concl in let c, sigma = Pfedit.refine_by_tactic env sigma ty solve_tac in Evd.define evk c sigma in List.fold_left solve sigma indep let no_constraints cstrs = fun ev _ -> not (Evar.Set.mem ev cstrs) let all_constraints cstrs = fun ev _ -> Evar.Set.mem ev cstrs let poly_inverse sort = if sort then PropGlobal.inverse else TypeGlobal.inverse type rewrite_proof = | RewPrf of constr * constr (** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *) | RewCast of cast_kind (** A proof of convertibility (with casts) *) type rewrite_result_info = { rew_car : constr ; (** A type *) rew_from : constr ; (** A term of type rew_car *) rew_to : constr ; (** A term of type rew_car *) rew_prf : rewrite_proof ; (** A proof of rew_from == rew_to *) rew_evars : evars; } type rewrite_result = | Fail | Identity | Success of rewrite_result_info type 'a strategy_input = { state : 'a ; (* a parameter: for instance, a state *) env : Environ.env ; unfresh : Id.t list ; (* Unfresh names *) term1 : constr ; ty1 : types ; (* first term and its type (convertible to rew_from) *) cstr : (bool (* prop *) * constr option) ; evars : evars } type 'a pure_strategy = { strategy : 'a strategy_input -> 'a * rewrite_result (* the updated state and the "result" *) } type strategy = unit pure_strategy let symmetry env sort rew = let { rew_evars = evars; rew_car = car; } = rew in let (rew_evars, rew_prf) = match rew.rew_prf with | RewCast _ -> (rew.rew_evars, rew.rew_prf) | RewPrf (rel, prf) -> try let evars, symprf = get_symmetric_proof sort env evars car rel in let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in (evars, RewPrf (rel, prf)) with Not_found -> let evars, rel = poly_inverse sort env evars car rel in (evars, RewPrf (rel, prf)) in { rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; } (* Matching/unifying the rewriting rule against [t] *) let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t = try let left = if l2r then c1 else c2 in let sigma = Unification.w_unify ~flags env sigma CONV left t in let sigma = Typeclasses.resolve_typeclasses ~filter:(no_constraints cstrs) ~fail:true env sigma in let evd = solve_remaining_by env sigma holes by in let nf c = Evarutil.nf_evar evd (Reductionops.nf_meta evd c) in let c1 = nf c1 and c2 = nf c2 and rew_car = nf car and rel = nf rel and prf = nf prf in let ty1 = Retyping.get_type_of env evd c1 in let ty2 = Retyping.get_type_of env evd c2 in let () = if not (convertible env evd ty2 ty1) then raise Reduction.NotConvertible in let rew_evars = evd, cstrs in let rew_prf = RewPrf (rel, prf) in let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in let rew = if l2r then rew else symmetry env sort rew in Some rew with | e when Class_tactics.catchable e -> None | Reduction.NotConvertible -> None let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t = try let left = if l2r then c1 else c2 in (* The pattern is already instantiated, so the next w_unify is basically an eq_constr, except when preexisting evars occur in either the lemma or the goal, in which case the eq_constr also solved this evars *) let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in let rew_evars = sigma, cstrs in let rew_prf = RewPrf (rel, prf) in let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in let rew = if l2r then rew else symmetry env sort rew in Some rew with | e when Class_tactics.catchable e -> None | Reduction.NotConvertible -> None type rewrite_flags = { under_lambdas : bool; on_morphisms : bool } let default_flags = { under_lambdas = true; on_morphisms = true; } let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None let make_eq () = (*FIXME*) Universes.constr_of_global (Coqlib.build_coq_eq ()) let make_eq_refl () = (*FIXME*) Universes.constr_of_global (Coqlib.build_coq_eq_refl ()) let get_rew_prf r = match r.rew_prf with | RewPrf (rel, prf) -> rel, prf | RewCast c -> let rel = mkApp (make_eq (), [| r.rew_car |]) in rel, mkCast (mkApp (make_eq_refl (), [| r.rew_car; r.rew_from |]), c, mkApp (rel, [| r.rew_from; r.rew_to |])) let poly_subrelation sort = if sort then PropGlobal.subrelation else TypeGlobal.subrelation let resolve_subrelation env avoid car rel sort prf rel' res = if eq_constr rel rel' then res else let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in let evars, subrel = new_cstr_evar evars env app in let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in { res with rew_prf = RewPrf (rel', appsub); rew_evars = evars } let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' (b,cstr) evars = let evars, morph_instance, proj, sigargs, m', args, args' = let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with | Some i -> i | None -> invalid_arg "resolve_morphism" in let morphargs, morphobjs = Array.chop first args in let morphargs', morphobjs' = Array.chop first args' in let appm = mkApp(m, morphargs) in let appmtype = Typing.unsafe_type_of env (goalevars evars) appm in let cstrs = List.map (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf)) (Array.to_list morphobjs') in (* Desired signature *) let evars, appmtype', signature, sigargs = if b then PropGlobal.build_signature evars env appmtype cstrs cstr else TypeGlobal.build_signature evars env appmtype cstrs cstr in (* Actual signature found *) let cl_args = [| appmtype' ; signature ; appm |] in let evars, app = app_poly_sort b env evars (if b then PropGlobal.proper_type else TypeGlobal.proper_type) cl_args in let env' = let dosub, appsub = if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation in Environ.push_named (LocalDef (Id.of_string "do_subrelation", snd (app_poly_sort b env evars dosub [||]), snd (app_poly_nocheck env evars appsub [||]))) env in let evars, morph = new_cstr_evar evars env' app in evars, morph, morph, sigargs, appm, morphobjs, morphobjs' in let projargs, subst, evars, respars, typeargs = Array.fold_left2 (fun (acc, subst, evars, sigargs, typeargs') x y -> let (carrier, relation), sigargs = split_head sigargs in match relation with | Some relation -> let carrier = substl subst carrier and relation = substl subst relation in (match y with | None -> let evars, proof = (if b then PropGlobal.proper_proof else TypeGlobal.proper_proof) env evars carrier relation x in [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs' | Some r -> [ snd (get_rew_prf r); r.rew_to; x ] @ acc, subst, evars, sigargs, r.rew_to :: typeargs') | None -> if not (Option.is_empty y) then error "Cannot rewrite inside dependent arguments of a function"; x :: acc, x :: subst, evars, sigargs, x :: typeargs') ([], [], evars, sigargs, []) args args' in let proof = applistc proj (List.rev projargs) in let newt = applistc m' (List.rev typeargs) in match respars with [ a, Some r ] -> evars, proof, substl subst a, substl subst r, oldt, fnewt newt | _ -> assert(false) let apply_constraint env avoid car rel prf cstr res = match snd cstr with | None -> res | Some r -> resolve_subrelation env avoid car rel (fst cstr) prf r res let coerce env avoid cstr res = let rel, prf = get_rew_prf res in apply_constraint env avoid res.rew_car rel prf cstr res let apply_rule unify loccs : int pure_strategy = let (nowhere_except_in,occs) = convert_occs loccs in let is_occ occ = if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in { strategy = fun { state = occ ; env ; unfresh ; term1 = t ; ty1 = ty ; cstr ; evars } -> let unif = if isEvar t then None else unify env evars t in match unif with | None -> (occ, Fail) | Some rew -> let occ = succ occ in if not (is_occ occ) then (occ, Fail) else if eq_constr t rew.rew_to then (occ, Identity) else let res = { rew with rew_car = ty } in let rel, prf = get_rew_prf res in let res = Success (apply_constraint env unfresh rew.rew_car rel prf cstr res) in (occ, res) } let apply_lemma l2r flags oc by loccs : strategy = { strategy = fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) -> let sigma, c = oc sigma in let sigma, hypinfo = decompose_applied_relation env sigma c in let { c1; c2; car; rel; prf; sort; holes } = hypinfo in let rew = (car, rel, prf, c1, c2, holes, sort) in let evars = (sigma, cstrs) in let unify env evars t = let rew = unify_eqn rew l2r flags env evars by t in match rew with | None -> None | Some rew -> Some rew in let _, res = (apply_rule unify loccs).strategy { input with state = 0 ; evars } in (), res } let e_app_poly env evars f args = let evars', c = app_poly_nocheck env !evars f args in evars := evars'; c let make_leibniz_proof env c ty r = let evars = ref r.rew_evars in let prf = match r.rew_prf with | RewPrf (rel, prf) -> let rel = e_app_poly env evars coq_eq [| ty |] in let prf = e_app_poly env evars coq_f_equal [| r.rew_car; ty; mkLambda (Anonymous, r.rew_car, c); r.rew_from; r.rew_to; prf |] in RewPrf (rel, prf) | RewCast k -> r.rew_prf in { rew_car = ty; rew_evars = !evars; rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf } let reset_env env = let env' = Global.env_of_context (Environ.named_context_val env) in Environ.push_rel_context (Environ.rel_context env) env' let fold_match ?(force=false) env sigma c = let (ci, p, c, brs) = destCase c in let cty = Retyping.get_type_of env sigma c in let dep, pred, exists, (sk,eff) = let env', ctx, body = let ctx, pred = decompose_lam_assum p in let env' = Environ.push_rel_context ctx env in env', ctx, pred in let sortp = Retyping.get_sort_family_of env' sigma body in let sortc = Retyping.get_sort_family_of env sigma cty in let dep = not (noccurn 1 body) in let pred = if dep then p else it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx) in let sk = if sortp == InProp then if sortc == InProp then if dep then case_dep_scheme_kind_from_prop else case_scheme_kind_from_prop else ( if dep then case_dep_scheme_kind_from_type_in_prop else case_scheme_kind_from_type) else ((* sortc <> InProp by typing *) if dep then case_dep_scheme_kind_from_type else case_scheme_kind_from_type) in let exists = Ind_tables.check_scheme sk ci.ci_ind in if exists || force then dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind else raise Not_found in let app = let ind, args = Inductive.find_rectype env cty in let pars, args = List.chop ci.ci_npar args in let meths = List.map (fun br -> br) (Array.to_list brs) in applist (mkConst sk, pars @ [pred] @ meths @ args @ [c]) in sk, (if exists then env else reset_env env), app, eff let unfold_match env sigma sk app = match kind_of_term app with | App (f', args) when eq_constant (fst (destConst f')) sk -> let v = Environ.constant_value_in (Global.env ()) (sk,Univ.Instance.empty)(*FIXME*) in Reductionops.whd_beta sigma (mkApp (v, args)) | _ -> app let is_rew_cast = function RewCast _ -> true | _ -> false let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy = let rec aux { state ; env ; unfresh ; term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } = let cstr' = Option.map (fun c -> (ty, Some c)) cstr in match kind_of_term t with | App (m, args) -> let rewrite_args state success = let state, (args', evars', progress) = Array.fold_left (fun (state, (acc, evars, progress)) arg -> if not (Option.is_empty progress) && not all then state, (None :: acc, evars, progress) else let argty = Retyping.get_type_of env (goalevars evars) arg in let state, res = s.strategy { state ; env ; unfresh ; term1 = arg ; ty1 = argty ; cstr = (prop,None) ; evars } in let res' = match res with | Identity -> let progress = if Option.is_empty progress then Some false else progress in (None :: acc, evars, progress) | Success r -> (Some r :: acc, r.rew_evars, Some true) | Fail -> (None :: acc, evars, progress) in state, res') (state, ([], evars, success)) args in let res = match progress with | None -> Fail | Some false -> Identity | Some true -> let args' = Array.of_list (List.rev args') in if Array.exists (function | None -> false | Some r -> not (is_rew_cast r.rew_prf)) args' then let evars', prf, car, rel, c1, c2 = resolve_morphism env unfresh t m args args' (prop, cstr') evars' in let res = { rew_car = ty; rew_from = c1; rew_to = c2; rew_prf = RewPrf (rel, prf); rew_evars = evars' } in Success res else let args' = Array.map2 (fun aorig anew -> match anew with None -> aorig | Some r -> r.rew_to) args args' in let res = { rew_car = ty; rew_from = t; rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast; rew_evars = evars' } in Success res in state, res in if flags.on_morphisms then let mty = Retyping.get_type_of env (goalevars evars) m in let evars, cstr', m, mty, argsl, args = let argsl = Array.to_list args in let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in match lift env evars argsl m mty None with | Some (evars, cstr', m, mty, args) -> evars, Some cstr', m, mty, args, Array.of_list args | None -> evars, None, m, mty, argsl, args in let state, m' = s.strategy { state ; env ; unfresh ; term1 = m ; ty1 = mty ; cstr = (prop, cstr') ; evars } in match m' with | Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *) | Identity -> rewrite_args state (Some false) | Success r -> (* We rewrote the function and get a proof of pointwise rel for the arguments. We just apply it. *) let prf = match r.rew_prf with | RewPrf (rel, prf) -> let app = if prop then PropGlobal.apply_pointwise else TypeGlobal.apply_pointwise in RewPrf (app rel argsl, mkApp (prf, args)) | x -> x in let res = { rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args; rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args); rew_prf = prf; rew_evars = r.rew_evars } in let res = match prf with | RewPrf (rel, prf) -> Success (apply_constraint env unfresh res.rew_car rel prf (prop,cstr) res) | _ -> Success res in state, res else rewrite_args state None | Prod (n, x, b) when noccurn 1 b -> let b = subst1 mkProp b in let tx = Retyping.get_type_of env (goalevars evars) x and tb = Retyping.get_type_of env (goalevars evars) b in let arr = if prop then PropGlobal.arrow_morphism else TypeGlobal.arrow_morphism in let (evars', mor), unfold = arr env evars tx tb x b in let state, res = aux { state ; env ; unfresh ; term1 = mor ; ty1 = ty ; cstr = (prop,cstr) ; evars = evars' } in let res = match res with | Success r -> Success { r with rew_to = unfold r.rew_to } | Fail | Identity -> res in state, res (* if x' = None && flags.under_lambdas then *) (* let lam = mkLambda (n, x, b) in *) (* let lam', occ = aux env lam occ None in *) (* let res = *) (* match lam' with *) (* | None -> None *) (* | Some (prf, (car, rel, c1, c2)) -> *) (* Some (resolve_morphism env sigma t *) (* ~fnewt:unfold_all *) (* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *) (* cstr evars) *) (* in res, occ *) (* else *) | Prod (n, dom, codom) -> let lam = mkLambda (n, dom, codom) in let (evars', app), unfold = if eq_constr ty mkProp then (app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all else let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in (app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall in let state, res = aux { state ; env ; unfresh ; term1 = app ; ty1 = ty ; cstr = (prop,cstr) ; evars = evars' } in let res = match res with | Success r -> Success { r with rew_to = unfold r.rew_to } | Fail | Identity -> res in state, res (* TODO: real rewriting under binders: introduce x x' (H : R x x') and rewrite with H at any occurrence of x. Ask for (R ==> R') for the lambda. Formalize this. B. Barras' idea is to have a context of relations, of length 1, with Σ for gluing dependent relations and using projections to get them out. *) (* | Lambda (n, t, b) when flags.under_lambdas -> *) (* let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in *) (* let n'' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n' in *) (* let n''' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n'' in *) (* let rel = new_cstr_evar cstr env (mkApp (Lazy.force coq_relation, [|t|])) in *) (* let env' = Environ.push_rel_context [(n'',None,lift 2 rel);(n'',None,lift 1 t);(n', None, t)] env in *) (* let b' = s env' avoid b (Typing.type_of env' (goalevars evars) (lift 2 b)) (unlift_cstr env (goalevars evars) cstr) evars in *) (* (match b' with *) (* | Some (Some r) -> *) (* let prf = match r.rew_prf with *) (* | RewPrf (rel, prf) -> *) (* let rel = pointwise_or_dep_relation n' t r.rew_car rel in *) (* let prf = mkLambda (n', t, prf) in *) (* RewPrf (rel, prf) *) (* | x -> x *) (* in *) (* Some (Some { r with *) (* rew_prf = prf; *) (* rew_car = mkProd (n, t, r.rew_car); *) (* rew_from = mkLambda(n, t, r.rew_from); *) (* rew_to = mkLambda (n, t, r.rew_to) }) *) (* | _ -> b') *) | Lambda (n, t, b) when flags.under_lambdas -> let n' = name_app (fun id -> Tactics.fresh_id_in_env unfresh id env) n in let open Context.Rel.Declaration in let env' = Environ.push_rel (LocalAssum (n', t)) env in let bty = Retyping.get_type_of env' (goalevars evars) b in let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in let state, b' = s.strategy { state ; env = env' ; unfresh ; term1 = b ; ty1 = bty ; cstr = (prop, unlift env evars cstr) ; evars } in let res = match b' with | Success r -> let r = match r.rew_prf with | RewPrf (rel, prf) -> let point = if prop then PropGlobal.pointwise_or_dep_relation else TypeGlobal.pointwise_or_dep_relation in let evars, rel = point env r.rew_evars n' t r.rew_car rel in let prf = mkLambda (n', t, prf) in { r with rew_prf = RewPrf (rel, prf); rew_evars = evars } | x -> r in Success { r with rew_car = mkProd (n, t, r.rew_car); rew_from = mkLambda(n, t, r.rew_from); rew_to = mkLambda (n, t, r.rew_to) } | Fail | Identity -> b' in state, res | Case (ci, p, c, brs) -> let cty = Retyping.get_type_of env (goalevars evars) c in let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in let cstr' = Some eqty in let state, c' = s.strategy { state ; env ; unfresh ; term1 = c ; ty1 = cty ; cstr = (prop, cstr') ; evars = evars' } in let state, res = match c' with | Success r -> let case = mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs) in let res = make_leibniz_proof env case ty r in state, Success (coerce env unfresh (prop,cstr) res) | Fail | Identity -> if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in let cstr = Some eqty in let state, found, brs' = Array.fold_left (fun (state, found, acc) br -> if not (Option.is_empty found) then (state, found, fun x -> lift 1 br :: acc x) else let state, res = s.strategy { state ; env ; unfresh ; term1 = br ; ty1 = ty ; cstr = (prop,cstr) ; evars } in match res with | Success r -> (state, Some r, fun x -> mkRel 1 :: acc x) | Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x)) (state, None, fun x -> []) brs in match found with | Some r -> let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' c'))) in state, Success (make_leibniz_proof env ctxc ty r) | None -> state, c' else match try Some (fold_match env (goalevars evars) t) with Not_found -> None with | None -> state, c' | Some (cst, _, t', eff (*FIXME*)) -> let state, res = aux { state ; env ; unfresh ; term1 = t' ; ty1 = ty ; cstr = (prop,cstr) ; evars } in let res = match res with | Success prf -> Success { prf with rew_from = t; rew_to = unfold_match env (goalevars evars) cst prf.rew_to } | x' -> c' in state, res in let res = match res with | Success r -> let rel, prf = get_rew_prf r in Success (apply_constraint env unfresh r.rew_car rel prf (prop,cstr) r) | Fail | Identity -> res in state, res | _ -> state, Fail in { strategy = aux } let all_subterms = subterm true default_flags let one_subterm = subterm false default_flags (** Requires transitivity of the rewrite step, if not a reduction. Not tail-recursive. *) let transitivity state env unfresh prop (res : rewrite_result_info) (next : 'a pure_strategy) : 'a * rewrite_result = let state, nextres = next.strategy { state ; env ; unfresh ; term1 = res.rew_to ; ty1 = res.rew_car ; cstr = (prop, get_opt_rew_rel res.rew_prf) ; evars = res.rew_evars } in let res = match nextres with | Fail -> Fail | Identity -> Success res | Success res' -> match res.rew_prf with | RewCast c -> Success { res' with rew_from = res.rew_from } | RewPrf (rew_rel, rew_prf) -> match res'.rew_prf with | RewCast _ -> Success { res with rew_to = res'.rew_to } | RewPrf (res'_rel, res'_prf) -> let trans = if prop then PropGlobal.transitive_type else TypeGlobal.transitive_type in let evars, prfty = app_poly_sort prop env res'.rew_evars trans [| res.rew_car; rew_rel |] in let evars, prf = new_cstr_evar evars env prfty in let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to; rew_prf; res'_prf |]) in Success { res' with rew_from = res.rew_from; rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) } in state, res (** Rewriting strategies. Inspired by ELAN's rewriting strategies: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049 *) module Strategies = struct let fail : 'a pure_strategy = { strategy = fun { state } -> state, Fail } let id : 'a pure_strategy = { strategy = fun { state } -> state, Identity } let refl : 'a pure_strategy = { strategy = fun { state ; env ; term1 = t ; ty1 = ty ; cstr = (prop,cstr) ; evars } -> let evars, rel = match cstr with | None -> let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in let evars, rty = mkr env evars ty in new_cstr_evar evars env rty | Some r -> evars, r in let evars, proof = let proxy = if prop then PropGlobal.proper_proxy_type else TypeGlobal.proper_proxy_type in let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in new_cstr_evar evars env mty in let res = Success { rew_car = ty; rew_from = t; rew_to = t; rew_prf = RewPrf (rel, proof); rew_evars = evars } in state, res } let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy = fun input -> let state, res = s.strategy input in match res with | Fail -> state, Fail | Identity -> state, Fail | Success r -> state, Success r } let seq first snd : 'a pure_strategy = { strategy = fun ({ env ; unfresh ; cstr } as input) -> let state, res = first.strategy input in match res with | Fail -> state, Fail | Identity -> snd.strategy { input with state } | Success res -> transitivity state env unfresh (fst cstr) res snd } let choice fst snd : 'a pure_strategy = { strategy = fun input -> let state, res = fst.strategy input in match res with | Fail -> snd.strategy { input with state } | Identity | Success _ -> state, res } let try_ str : 'a pure_strategy = choice str id let check_interrupt str input = Control.check_for_interrupt (); str input let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy = let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in { strategy = aux } let any (s : 'a pure_strategy) : 'a pure_strategy = fix (fun any -> try_ (seq s any)) let repeat (s : 'a pure_strategy) : 'a pure_strategy = seq s (any s) let bu (s : 'a pure_strategy) : 'a pure_strategy = fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s')) let td (s : 'a pure_strategy) : 'a pure_strategy = fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s')) let innermost (s : 'a pure_strategy) : 'a pure_strategy = fix (fun ins -> choice (one_subterm ins) s) let outermost (s : 'a pure_strategy) : 'a pure_strategy = fix (fun out -> choice s (one_subterm out)) let lemmas cs : 'a pure_strategy = List.fold_left (fun tac (l,l2r,by) -> choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences)) fail cs let inj_open hint = (); fun sigma -> let ctx = Evd.evar_universe_context_of hint.Autorewrite.rew_ctx in let sigma = Evd.merge_universe_context sigma ctx in (sigma, (hint.Autorewrite.rew_lemma, NoBindings)) let old_hints (db : string) : 'a pure_strategy = let rules = Autorewrite.find_rewrites db in lemmas (List.map (fun hint -> (inj_open hint, hint.Autorewrite.rew_l2r, hint.Autorewrite.rew_tac)) rules) let hints (db : string) : 'a pure_strategy = { strategy = fun ({ term1 = t } as input) -> let rules = Autorewrite.find_matches db t in let lemma hint = (inj_open hint, hint.Autorewrite.rew_l2r, hint.Autorewrite.rew_tac) in let lems = List.map lemma rules in (lemmas lems).strategy input } let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy = fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } -> let rfn, ckind = Redexpr.reduction_of_red_expr env r in let sigma = Sigma.Unsafe.of_evar_map (goalevars evars) in let Sigma (t', sigma, _) = rfn.Reductionops.e_redfun env sigma t in let evars' = Sigma.to_evar_map sigma in if eq_constr t' t then state, Identity else state, Success { rew_car = ty; rew_from = t; rew_to = t'; rew_prf = RewCast ckind; rew_evars = evars', cstrevars evars } } let fold_glob c : 'a pure_strategy = { strategy = fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } -> (* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *) let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in let unfolded = try Tacred.try_red_product env sigma c with e when CErrors.noncritical e -> error "fold: the term is not unfoldable !" in try let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in let c' = Evarutil.nf_evar sigma c in state, Success { rew_car = ty; rew_from = t; rew_to = c'; rew_prf = RewCast DEFAULTcast; rew_evars = (sigma, snd evars) } with e when CErrors.noncritical e -> state, Fail } end (** The strategy for a single rewrite, dealing with occurrences. *) (** A dummy initial clauseenv to avoid generating initial evars before even finding a first application of the rewriting lemma, in setoid_rewrite mode *) let rewrite_with l2r flags c occs : strategy = { strategy = fun ({ state = () } as input) -> let unify env evars t = let (sigma, cstrs) = evars in let (sigma, rew) = refresh_hypinfo env sigma c in unify_eqn rew l2r flags env (sigma, cstrs) None t in let app = apply_rule unify occs in let strat = Strategies.fix (fun aux -> Strategies.choice app (subterm true default_flags aux)) in let _, res = strat.strategy { input with state = 0 } in ((), res) } let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars = let ty = Retyping.get_type_of env (goalevars evars) concl in let _, res = s.strategy { state = () ; env ; unfresh ; term1 = concl ; ty1 = ty ; cstr = (prop, Some cstr) ; evars } in res let solve_constraints env (evars,cstrs) = let filter = all_constraints cstrs in Typeclasses.resolve_typeclasses env ~filter ~split:false ~fail:true (Typeclasses.mark_resolvables ~filter evars) let nf_zeta = Reductionops.clos_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA]) exception RewriteFailure of Pp.std_ppcmds type result = (evar_map * constr option * types) option option let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result = let evdref = ref sigma in let sort = Typing.e_sort_of env evdref concl in let evars = (!evdref, Evar.Set.empty) in let evars, cstr = let prop, (evars, arrow) = if is_prop_sort sort then true, app_poly_sort true env evars impl [||] else false, app_poly_sort false env evars TypeGlobal.arrow [||] in match is_hyp with | None -> let evars, t = poly_inverse prop env evars (mkSort sort) arrow in evars, (prop, t) | Some _ -> evars, (prop, arrow) in let eq = apply_strategy strat env avoid concl cstr evars in match eq with | Fail -> None | Identity -> Some None | Success res -> let (_, cstrs) = res.rew_evars in let evars' = solve_constraints env res.rew_evars in let newt = Evarutil.nf_evar evars' res.rew_to in let evars = (* Keep only original evars (potentially instantiated) and goal evars, the rest has been defined and substituted already. *) Evar.Set.fold (fun ev acc -> if not (Evd.is_defined acc ev) then user_err ~hdr:"rewrite" (str "Unsolved constraint remaining: " ++ spc () ++ Evd.pr_evar_info (Evd.find acc ev)) else Evd.remove acc ev) cstrs evars' in let res = match res.rew_prf with | RewCast c -> None | RewPrf (rel, p) -> let p = nf_zeta env evars' (Evarutil.nf_evar evars' p) in let term = match abs with | None -> p | Some (t, ty) -> let t = Evarutil.nf_evar evars' t in let ty = Evarutil.nf_evar evars' ty in mkApp (mkLambda (Name (Id.of_string "lemma"), ty, p), [| t |]) in let proof = match is_hyp with | None -> term | Some id -> mkApp (term, [| mkVar id |]) in Some proof in Some (Some (evars, res, newt)) (** Insert a declaration after the last declaration it depends on *) let rec insert_dependent env decl accu hyps = match hyps with | [] -> List.rev_append accu [decl] | ndecl :: rem -> if occur_var_in_decl env (NamedDecl.get_id ndecl) decl then List.rev_append accu (decl :: hyps) else insert_dependent env decl (ndecl :: accu) rem let assert_replacing id newt tac = let prf = Proofview.Goal.nf_enter { enter = begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let ctx = Environ.named_context env in let after, before = List.split_when (NamedDecl.get_id %> Id.equal id) ctx in let nc = match before with | [] -> assert false | d :: rem -> insert_dependent env (LocalAssum (NamedDecl.get_id d, newt)) [] after @ rem in let env' = Environ.reset_with_named_context (val_of_named_context nc) env in Refine.refine ~unsafe:false { run = begin fun sigma -> let Sigma (ev, sigma, p) = Evarutil.new_evar env' sigma concl in let Sigma (ev', sigma, q) = Evarutil.new_evar env sigma newt in let map d = let n = NamedDecl.get_id d in if Id.equal n id then ev' else mkVar n in let (e, _) = destEvar ev in Sigma (mkEvar (e, Array.map_of_list map nc), sigma, p +> q) end } end } in Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac) let newfail n s = Proofview.tclZERO (Refiner.FailError (n, lazy s)) let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause = let open Proofview.Notations in (** For compatibility *) let beta_red _ sigma c = Reductionops.nf_betaiota sigma c in let beta = Tactics.reduct_in_concl (beta_red, DEFAULTcast) in let beta_hyp id = Tactics.reduct_in_hyp beta_red (id, InHyp) in let treat sigma res = match res with | None -> newfail 0 (str "Nothing to rewrite") | Some None -> if progress then newfail 0 (str"Failed to progress") else Proofview.tclUNIT () | Some (Some res) -> let (undef, prf, newt) = res in let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in let gls = List.rev (Evd.fold_undefined fold undef []) in match clause, prf with | Some id, Some p -> let tac = tclTHENLIST [ Refine.refine ~unsafe:false { run = fun h -> Sigma.here p h }; Proofview.Unsafe.tclNEWGOALS gls; ] in Proofview.Unsafe.tclEVARS undef <*> tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id) | Some id, None -> Proofview.Unsafe.tclEVARS undef <*> convert_hyp_no_check (LocalAssum (id, newt)) <*> beta_hyp id | None, Some p -> Proofview.Unsafe.tclEVARS undef <*> Proofview.Goal.enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let make = { run = begin fun sigma -> let Sigma (ev, sigma, q) = Evarutil.new_evar env sigma newt in Sigma (mkApp (p, [| ev |]), sigma, q) end } in Refine.refine ~unsafe:false make <*> Proofview.Unsafe.tclNEWGOALS gls end } | None, None -> Proofview.Unsafe.tclEVARS undef <*> convert_concl_no_check newt DEFAULTcast in Proofview.Goal.nf_enter { enter = begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = match clause with | None -> concl | Some id -> Environ.named_type id env in let env = match clause with | None -> env | Some id -> (** Only consider variables not depending on [id] *) let ctx = Environ.named_context env in let filter decl = not (occur_var_in_decl env id decl) in let nctx = List.filter filter ctx in Environ.reset_with_named_context (Environ.val_of_named_context nctx) env in try let res = cl_rewrite_clause_aux ?abs strat env [] sigma ty clause in let sigma = match origsigma with None -> sigma | Some sigma -> sigma in treat sigma res <*> (** For compatibility *) beta <*> Proofview.shelve_unifiable with | PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) -> raise (RewriteFailure (Himsg.explain_pretype_error env evd e)) end } let tactic_init_setoid () = try init_setoid (); Proofview.tclUNIT () with e when CErrors.noncritical e -> Tacticals.New.tclFAIL 0 (str"Setoid library not loaded") let cl_rewrite_clause_strat progress strat clause = tactic_init_setoid () <*> (if progress then Proofview.tclPROGRESS else fun x -> x) (Proofview.tclOR (cl_rewrite_clause_newtac ~progress strat clause) (fun (e, info) -> match e with | RewriteFailure e -> tclZEROMSG (str"setoid rewrite failed: " ++ e) | Refiner.FailError (n, pp) -> tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp) | e -> Proofview.tclZERO ~info e)) (** Setoid rewriting when called with "setoid_rewrite" *) let cl_rewrite_clause l left2right occs clause = let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in cl_rewrite_clause_strat true strat clause (** Setoid rewriting when called with "rewrite_strat" *) let cl_rewrite_clause_strat strat clause = cl_rewrite_clause_strat false strat clause let apply_glob_constr c l2r occs = (); fun ({ state = () ; env = env } as input) -> let c sigma = let (sigma, c) = Pretyping.understand_tcc env sigma c in (sigma, (c, NoBindings)) in let flags = general_rewrite_unif_flags () in (apply_lemma l2r flags c None occs).strategy input let interp_glob_constr_list env = let make c = (); fun sigma -> let sigma, c = Pretyping.understand_tcc env sigma c in (sigma, (c, NoBindings)) in List.map (fun c -> make c, true, None) (* Syntax for rewriting with strategies *) type unary_strategy = Subterms | Subterm | Innermost | Outermost | Bottomup | Topdown | Progress | Try | Any | Repeat type binary_strategy = | Compose | Choice type ('constr,'redexpr) strategy_ast = | StratId | StratFail | StratRefl | StratUnary of unary_strategy * ('constr,'redexpr) strategy_ast | StratBinary of binary_strategy * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast | StratConstr of 'constr * bool | StratTerms of 'constr list | StratHints of bool * string | StratEval of 'redexpr | StratFold of 'constr let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function | StratId | StratFail | StratRefl as s -> s | StratUnary (s, str) -> StratUnary (s, map_strategy f g str) | StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str') | StratConstr (c, b) -> StratConstr (f c, b) | StratTerms l -> StratTerms (List.map f l) | StratHints (b, id) -> StratHints (b, id) | StratEval r -> StratEval (g r) | StratFold c -> StratFold (f c) let pr_ustrategy = function | Subterms -> str "subterms" | Subterm -> str "subterm" | Innermost -> str "innermost" | Outermost -> str "outermost" | Bottomup -> str "bottomup" | Topdown -> str "topdown" | Progress -> str "progress" | Try -> str "try" | Any -> str "any" | Repeat -> str "repeat" let paren p = str "(" ++ p ++ str ")" let rec pr_strategy prc prr = function | StratId -> str "id" | StratFail -> str "fail" | StratRefl -> str "refl" | StratUnary (s, str) -> pr_ustrategy s ++ spc () ++ paren (pr_strategy prc prr str) | StratBinary (Choice, str1, str2) -> str "choice" ++ spc () ++ paren (pr_strategy prc prr str1) ++ spc () ++ paren (pr_strategy prc prr str2) | StratBinary (Compose, str1, str2) -> pr_strategy prc prr str1 ++ str ";" ++ spc () ++ pr_strategy prc prr str2 | StratConstr (c, true) -> prc c | StratConstr (c, false) -> str "<-" ++ spc () ++ prc c | StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl | StratHints (old, id) -> let cmd = if old then "old_hints" else "hints" in str cmd ++ spc () ++ str id | StratEval r -> str "eval" ++ spc () ++ prr r | StratFold c -> str "fold" ++ spc () ++ prc c let rec strategy_of_ast = function | StratId -> Strategies.id | StratFail -> Strategies.fail | StratRefl -> Strategies.refl | StratUnary (f, s) -> let s' = strategy_of_ast s in let f' = match f with | Subterms -> all_subterms | Subterm -> one_subterm | Innermost -> Strategies.innermost | Outermost -> Strategies.outermost | Bottomup -> Strategies.bu | Topdown -> Strategies.td | Progress -> Strategies.progress | Try -> Strategies.try_ | Any -> Strategies.any | Repeat -> Strategies.repeat in f' s' | StratBinary (f, s, t) -> let s' = strategy_of_ast s in let t' = strategy_of_ast t in let f' = match f with | Compose -> Strategies.seq | Choice -> Strategies.choice in f' s' t' | StratConstr (c, b) -> { strategy = apply_glob_constr (fst c) b AllOccurrences } | StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id | StratTerms l -> { strategy = (fun ({ state = () ; env } as input) -> let l' = interp_glob_constr_list env (List.map fst l) in (Strategies.lemmas l').strategy input) } | StratEval r -> { strategy = (fun ({ state = () ; env ; evars } as input) -> let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in (Strategies.reduce r_interp).strategy { input with evars = (sigma,cstrevars evars) }) } | StratFold c -> Strategies.fold_glob (fst c) (* By default the strategy for "rewrite_db" is top-down *) let mkappc s l = CAppExpl (Loc.ghost,(None,(Libnames.Ident (Loc.ghost,Id.of_string s)),None),l) let declare_an_instance n s args = (((Loc.ghost,Name n),None), Explicit, CAppExpl (Loc.ghost, (None, Qualid (Loc.ghost, qualid_of_string s),None), args)) let declare_instance a aeq n s = declare_an_instance n s [a;aeq] let anew_instance global binders instance fields = new_instance (Flags.is_universe_polymorphism ()) binders instance (Some (true, CRecord (Loc.ghost,fields))) ~global ~generalize:false ~refine:false Hints.empty_hint_info let declare_instance_refl global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive" in anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "reflexivity"),lemma)] let declare_instance_sym global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric" in anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "symmetry"),lemma)] let declare_instance_trans global binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive" in anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "transitivity"),lemma)] let declare_relation ?(binders=[]) a aeq n refl symm trans = init_setoid (); let global = not (Locality.make_section_locality (Locality.LocalityFixme.consume ())) in let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in ignore(anew_instance global binders instance []); match (refl,symm,trans) with (None, None, None) -> () | (Some lemma1, None, None) -> ignore (declare_instance_refl global binders a aeq n lemma1) | (None, Some lemma2, None) -> ignore (declare_instance_sym global binders a aeq n lemma2) | (None, None, Some lemma3) -> ignore (declare_instance_trans global binders a aeq n lemma3) | (Some lemma1, Some lemma2, None) -> ignore (declare_instance_refl global binders a aeq n lemma1); ignore (declare_instance_sym global binders a aeq n lemma2) | (Some lemma1, None, Some lemma3) -> let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in ignore( anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "PreOrder_Reflexive"), lemma1); (Ident (Loc.ghost,Id.of_string "PreOrder_Transitive"),lemma3)]) | (None, Some lemma2, Some lemma3) -> let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in ignore( anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "PER_Symmetric"), lemma2); (Ident (Loc.ghost,Id.of_string "PER_Transitive"),lemma3)]) | (Some lemma1, Some lemma2, Some lemma3) -> let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in ignore( anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), lemma1); (Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), lemma2); (Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), lemma3)]) let cHole = CHole (Loc.ghost, None, Misctypes.IntroAnonymous, None) let proper_projection r ty = let ctx, inst = decompose_prod_assum ty in let mor, args = destApp inst in let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in let app = mkApp (Lazy.force PropGlobal.proper_proj, Array.append args [| instarg |]) in it_mkLambda_or_LetIn app ctx let declare_projection n instance_id r = let poly = Global.is_polymorphic r in let env = Global.env () in let sigma = Evd.from_env env in let sigma,c = Evd.fresh_global env sigma r in let ty = Retyping.get_type_of env sigma c in let term = proper_projection c ty in let sigma, typ = Typing.type_of env sigma term in let ctx, typ = decompose_prod_assum typ in let typ = let n = let rec aux t = match kind_of_term t with | App (f, [| a ; a' ; rel; rel' |]) when Globnames.is_global (PropGlobal.respectful_ref ()) f -> succ (aux rel') | _ -> 0 in let init = match kind_of_term typ with App (f, args) when Globnames.is_global (PropGlobal.respectful_ref ()) f -> mkApp (f, fst (Array.chop (Array.length args - 2) args)) | _ -> typ in aux init in let ctx,ccl = Reductionops.splay_prod_n (Global.env()) Evd.empty (3 * n) typ in it_mkProd_or_LetIn ccl ctx in let typ = it_mkProd_or_LetIn typ ctx in let pl, ctx = Evd.universe_context sigma in let cst = Declare.definition_entry ~types:typ ~poly ~univs:ctx term in ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition)) let build_morphism_signature env sigma m = let m,ctx = Constrintern.interp_constr env sigma m in let sigma = Evd.from_ctx ctx in let t = Typing.unsafe_type_of env sigma m in let cstrs = let rec aux t = match kind_of_term t with | Prod (na, a, b) -> None :: aux b | _ -> [] in aux t in let evars, t', sig_, cstrs = PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in let evd = ref evars in let _ = List.iter (fun (ty, rel) -> Option.iter (fun rel -> let default = e_app_poly env evd PropGlobal.default_relation [| ty; rel |] in ignore(e_new_cstr_evar env evd default)) rel) cstrs in let morph = e_app_poly env evd PropGlobal.proper_type [| t; sig_; m |] in let evd = solve_constraints env !evd in let evd = Evd.nf_constraints evd in let m = Evarutil.nf_evars_universes evd morph in Pretyping.check_evars env Evd.empty evd m; Evd.evar_universe_context evd, m let default_morphism sign m = let env = Global.env () in let sigma = Evd.from_env env in let t = Typing.unsafe_type_of env sigma m in let evars, _, sign, cstrs = PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign) in let evars, morph = app_poly_check env evars PropGlobal.proper_type [| t; sign; m |] in let evars, mor = resolve_one_typeclass env (goalevars evars) morph in mor, proper_projection mor morph let add_setoid global binders a aeq t n = init_setoid (); let _lemma_refl = declare_instance_refl global binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in let _lemma_sym = declare_instance_sym global binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in let _lemma_trans = declare_instance_trans global binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in ignore( anew_instance global binders instance [(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]); (Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]); (Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])]) let make_tactic name = let open Tacexpr in let loc = Loc.ghost in let tacpath = Libnames.qualid_of_string name in let tacname = Qualid (loc, tacpath) in TacArg (loc, TacCall (loc, tacname, [])) let add_morphism_infer glob m n = init_setoid (); let poly = Flags.is_universe_polymorphism () in let instance_id = add_suffix n "_Proper" in let env = Global.env () in let evd = Evd.from_env env in let uctx, instance = build_morphism_signature env evd m in if Lib.is_modtype () then let cst = Declare.declare_constant ~internal:Declare.InternalTacticRequest instance_id (Entries.ParameterEntry (None,poly,(instance,Evd.evar_context_universe_context uctx),None), Decl_kinds.IsAssumption Decl_kinds.Logical) in add_instance (Typeclasses.new_instance (Lazy.force PropGlobal.proper_class) Hints.empty_hint_info glob poly (ConstRef cst)); declare_projection n instance_id (ConstRef cst) else let kind = Decl_kinds.Global, poly, Decl_kinds.DefinitionBody Decl_kinds.Instance in let tac = make_tactic "Coq.Classes.SetoidTactics.add_morphism_tactic" in let hook _ = function | Globnames.ConstRef cst -> add_instance (Typeclasses.new_instance (Lazy.force PropGlobal.proper_class) Hints.empty_hint_info glob poly (ConstRef cst)); declare_projection n instance_id (ConstRef cst) | _ -> assert false in let hook = Lemmas.mk_hook hook in Flags.silently (fun () -> Lemmas.start_proof instance_id kind (Evd.from_ctx uctx) instance hook; ignore (Pfedit.by (Tacinterp.interp tac))) () let add_morphism glob binders m s n = init_setoid (); let poly = Flags.is_universe_polymorphism () in let instance_id = add_suffix n "_Proper" in let instance = (((Loc.ghost,Name instance_id),None), Explicit, CAppExpl (Loc.ghost, (None, Qualid (Loc.ghost, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper"),None), [cHole; s; m])) in let tac = Tacinterp.interp (make_tactic "add_morphism_tactic") in ignore(new_instance ~global:glob poly binders instance (Some (true, CRecord (Loc.ghost,[]))) ~generalize:false ~tac ~hook:(declare_projection n instance_id) Hints.empty_hint_info) (** Bind to "rewrite" too *) (** Taken from original setoid_replace, to emulate the old rewrite semantics where lemmas are first instantiated and then rewrite proceeds. *) let check_evar_map_of_evars_defs evd = let metas = Evd.meta_list evd in let check_freemetas_is_empty rebus = Evd.Metaset.iter (fun m -> if Evd.meta_defined evd m then () else raise (Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m]))) in List.iter (fun (_,binding) -> match binding with Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) -> check_freemetas_is_empty rebus freemetas | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_), {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) -> check_freemetas_is_empty rebus1 freemetas1 ; check_freemetas_is_empty rebus2 freemetas2 ) metas (* Find a subterm which matches the pattern to rewrite for "rewrite" *) let unification_rewrite l2r c1 c2 sigma prf car rel but env = let (sigma,c') = try (* ~flags:(false,true) to allow to mark occurrences that must not be rewritten simply by replacing them with let-defined definitions in the context *) Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env sigma ((if l2r then c1 else c2),but) with | ex when Pretype_errors.precatchable_exception ex -> (* ~flags:(true,true) to make Ring work (since it really exploits conversion) *) Unification.w_unify_to_subterm ~flags:rewrite_conv_unif_flags env sigma ((if l2r then c1 else c2),but) in let nf c = Evarutil.nf_evar sigma c in let c1 = if l2r then nf c' else nf c1 and c2 = if l2r then nf c2 else nf c' and car = nf car and rel = nf rel in check_evar_map_of_evars_defs sigma; let prf = nf prf in let prfty = nf (Retyping.get_type_of env sigma prf) in let sort = sort_of_rel env sigma but in let abs = prf, prfty in let prf = mkRel 1 in let res = (car, rel, prf, c1, c2) in abs, sigma, res, Sorts.is_prop sort let get_hyp gl (c,l) clause l2r = let evars = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let sigma, hi = decompose_applied_relation env evars (c,l) in let but = match clause with | Some id -> Tacmach.New.pf_get_hyp_typ id gl | None -> Evarutil.nf_evar evars (Tacmach.New.pf_concl gl) in unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env let general_rewrite_flags = { under_lambdas = false; on_morphisms = true } (* let rewriteclaustac_key = Profile.declare_profile "cl_rewrite_clause_tac";; *) (* let cl_rewrite_clause_tac = Profile.profile5 rewriteclaustac_key cl_rewrite_clause_tac *) (** Setoid rewriting when called with "rewrite" *) let general_s_rewrite cl l2r occs (c,l) ~new_goals = Proofview.Goal.nf_enter { enter = begin fun gl -> let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in let unify env evars t = unify_abs res l2r sort env evars t in let app = apply_rule unify occs in let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in let substrat = Strategies.fix recstrat in let strat = { strategy = fun ({ state = () } as input) -> let _, res = substrat.strategy { input with state = 0 } in (), res } in let origsigma = Tacmach.New.project gl in tactic_init_setoid () <*> Proofview.tclOR (tclPROGRESS (tclTHEN (Proofview.Unsafe.tclEVARS evd) (cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl))) (fun (e, info) -> match e with | RewriteFailure e -> tclFAIL 0 (str"setoid rewrite failed: " ++ e) | e -> Proofview.tclZERO ~info e) end } let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite (** [setoid_]{reflexivity,symmetry,transitivity} tactics *) let not_declared env ty rel = tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env Evd.empty rel ++ str" is not a declared " ++ str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library") let setoid_proof ty fn fallback = Proofview.Goal.nf_enter { enter = begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in Proofview.tclORELSE begin try let rel, _, _ = decompose_app_rel env sigma concl in let (sigma, t) = Typing.type_of env sigma rel in let car = RelDecl.get_type (List.hd (fst (Reduction.dest_prod env t))) in (try init_relation_classes () with _ -> raise Not_found); fn env sigma car rel with e -> Proofview.tclZERO e end begin function | e -> Proofview.tclORELSE fallback begin function (e', info) -> match e' with | Hipattern.NoEquationFound -> begin match e with | (Not_found, _) -> let rel, _, _ = decompose_app_rel env sigma concl in not_declared env ty rel | (e, info) -> Proofview.tclZERO ~info e end | e' -> Proofview.tclZERO ~info e' end end end } let tac_open ((evm,_), c) tac = (tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c)) let poly_proof getp gett env evm car rel = if Sorts.is_prop (sort_of_rel env evm rel) then getp env (evm,Evar.Set.empty) car rel else gett env (evm,Evar.Set.empty) car rel let setoid_reflexivity = setoid_proof "reflexive" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_reflexive_proof TypeGlobal.get_reflexive_proof env evm car rel) (fun c -> tclCOMPLETE (apply c))) (reflexivity_red true) let setoid_symmetry = setoid_proof "symmetric" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof env evm car rel) (fun c -> apply c)) (symmetry_red true) let setoid_transitivity c = setoid_proof "transitive" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof env evm car rel) (fun proof -> match c with | None -> eapply proof | Some c -> apply_with_bindings (proof,ImplicitBindings [ c ]))) (transitivity_red true c) let setoid_symmetry_in id = Proofview.V82.tactic (fun gl -> let ctype = pf_unsafe_type_of gl (mkVar id) in let binders,concl = decompose_prod_assum ctype in let (equiv, args) = decompose_app concl in let rec split_last_two = function | [c1;c2] -> [],(c1, c2) | x::y::z -> let l,res = split_last_two (y::z) in x::l, res | _ -> error "Cannot find an equivalence relation to rewrite." in let others,(c1,c2) = split_last_two args in let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in let new_hyp' = mkApp (he, [| c2 ; c1 |]) in let new_hyp = it_mkProd_or_LetIn new_hyp' binders in Proofview.V82.of_tactic (tclTHENLAST (Tactics.assert_after_replacing id new_hyp) (tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ])) gl) let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity let get_lemma_proof f env evm x y = let (evm, _), c = f env (evm,Evar.Set.empty) x y in evm, c let get_reflexive_proof = get_lemma_proof PropGlobal.get_reflexive_proof let get_symmetric_proof = get_lemma_proof PropGlobal.get_symmetric_proof let get_transitive_proof = get_lemma_proof PropGlobal.get_transitive_proof