(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* IZR x = IZR y. Proof IZR_eq. (* or f_equal ... *) Lemma groebnerZconclR: forall x y:Z, IZR x = IZR y -> x = y. Proof eq_IZR. Lemma groebnerZhypnotR: forall x y:Z, x<>y -> IZR x <> IZR y. Proof IZR_neq. Lemma groebnerZconclnotR: forall x y:Z, IZR x <> IZR y -> x <> y. Proof. intros x y H. contradict H. f_equal. assumption. Qed. Ltac groebnerZversR1 := repeat (match goal with | H:(@eq Z ?x ?y) |- _ => generalize (@groebnerZhypR _ _ H); clear H; intro H | |- (@eq Z ?x ?y) => apply groebnerZconclR | H:not (@eq Z ?x ?y) |- _ => generalize (@groebnerZhypnotR _ _ H); clear H; intro H | |- not (@eq Z ?x ?y) => apply groebnerZconclnotR end). Lemma groebnerZR1: forall x y:Z, IZR(x+y) = (IZR x + IZR y)%R. Proof plus_IZR. Lemma groebnerZR2: forall x y:Z, IZR(x*y) = (IZR x * IZR y)%R. Proof mult_IZR. Lemma groebnerZR3: forall x y:Z, IZR(x-y) = (IZR x - IZR y)%R. Proof. intros; symmetry. apply Z_R_minus. Qed. Lemma groebnerZR4: forall (x:Z) p, IZR(x ^ Zpos p) = (IZR x ^ nat_of_P p)%R. Proof. intros. rewrite pow_IZR. do 2 f_equal. apply Zpos_eq_Z_of_nat_o_nat_of_P. Qed. Ltac groebnerZversR2:= repeat (rewrite groebnerZR1 in * || rewrite groebnerZR2 in * || rewrite groebnerZR3 in * || rewrite groebnerZR4 in *). Ltac groebnerZ_begin := intros; groebnerZversR1; groebnerZversR2; simpl in *. (*cbv beta iota zeta delta [nat_of_P Pmult_nat plus mult] in *.*) Ltac groebnerZ := groebnerZ_begin; (*idtac "groebnerZ_begin;";*) groebnerR.