open Names open Pp open Libnames open Globnames open Refiner open Hiddentac let mk_prefix pre id = Id.of_string (pre^(Id.to_string id)) let mk_rel_id = mk_prefix "R_" let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct" let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete" let mk_equation_id id = Nameops.add_suffix id "_equation" let msgnl m = () let fresh_id avoid s = Namegen.next_ident_away_in_goal (Id.of_string s) avoid let fresh_name avoid s = Name (fresh_id avoid s) let get_name avoid ?(default="H") = function | Anonymous -> fresh_name avoid default | Name n -> Name n let array_get_start a = try Array.init (Array.length a - 1) (fun i -> a.(i)) with Invalid_argument "index out of bounds" -> invalid_arg "array_get_start" let id_of_name = function Name id -> id | _ -> raise Not_found let locate ref = let (loc,qid) = qualid_of_reference ref in Nametab.locate qid let locate_ind ref = match locate ref with | IndRef x -> x | _ -> raise Not_found let locate_constant ref = match locate ref with | ConstRef x -> x | _ -> raise Not_found let locate_with_msg msg f x = try f x with Not_found -> raise (Errors.UserError("", msg)) let filter_map filter f = let rec it = function | [] -> [] | e::l -> if filter e then (f e) :: it l else it l in it let chop_rlambda_n = let rec chop_lambda_n acc n rt = if n == 0 then List.rev acc,rt else match rt with | Glob_term.GLambda(_,name,k,t,b) -> chop_lambda_n ((name,t,false)::acc) (n-1) b | Glob_term.GLetIn(_,name,v,b) -> chop_lambda_n ((name,v,true)::acc) (n-1) b | _ -> raise (Errors.UserError("chop_rlambda_n", str "chop_rlambda_n: Not enough Lambdas")) in chop_lambda_n [] let chop_rprod_n = let rec chop_prod_n acc n rt = if n == 0 then List.rev acc,rt else match rt with | Glob_term.GProd(_,name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b | _ -> raise (Errors.UserError("chop_rprod_n",str "chop_rprod_n: Not enough products")) in chop_prod_n [] let list_union_eq eq_fun l1 l2 = let rec urec = function | [] -> l2 | a::l -> if List.exists (eq_fun a) l2 then urec l else a::urec l in urec l1 let list_add_set_eq eq_fun x l = if List.exists (eq_fun x) l then l else x::l let const_of_id id = let _,princ_ref = qualid_of_reference (Libnames.Ident (Loc.ghost,id)) in try Nametab.locate_constant princ_ref with Not_found -> Errors.error ("cannot find "^ Id.to_string id) let def_of_const t = match (Term.kind_of_term t) with Term.Const sp -> (try (match Declareops.body_of_constant (Global.lookup_constant sp) with | Some c -> Lazyconstr.force c | _ -> assert false) with Not_found -> assert false) |_ -> assert false let coq_constant s = Coqlib.gen_constant_in_modules "RecursiveDefinition" Coqlib.init_modules s;; let find_reference sl s = let dp = Names.DirPath.make (List.rev_map Id.of_string sl) in Nametab.locate (make_qualid dp (Id.of_string s)) let eq = lazy(coq_constant "eq") let refl_equal = lazy(coq_constant "eq_refl") (*****************************************************************) (* Copy of the standart save mechanism but without the much too *) (* slow reduction function *) (*****************************************************************) open Entries open Decl_kinds open Declare let definition_message = Declare.definition_message let get_locality = function | Discharge -> true | Local -> true | Global -> false let save with_clean id const (locality,kind) hook = let {const_entry_body = pft; const_entry_secctx = _; const_entry_type = tpo; const_entry_opaque = opacity } = const in let l,r = match locality with | Discharge when Lib.sections_are_opened () -> let k = Kindops.logical_kind_of_goal_kind kind in let c = SectionLocalDef (pft, tpo, opacity) in let _ = declare_variable id (Lib.cwd(), c, k) in (Local, VarRef id) | Discharge | Local | Global -> let local = get_locality locality in let k = Kindops.logical_kind_of_goal_kind kind in let kn = declare_constant id ~local (DefinitionEntry const, k) in (locality, ConstRef kn) in if with_clean then Pfedit.delete_current_proof (); hook l r; definition_message id let cook_proof _ = let (id,(entry,_,strength,hook)) = Pfedit.cook_proof (fun _ -> ()) in (id,(entry,strength,hook)) let new_save_named opacity = let id,(const,persistence,hook) = cook_proof true in let const = { const with const_entry_opaque = opacity } in save true id const persistence hook let get_proof_clean do_reduce = let result = cook_proof do_reduce in Pfedit.delete_current_proof (); result let with_full_print f a = let old_implicit_args = Impargs.is_implicit_args () and old_strict_implicit_args = Impargs.is_strict_implicit_args () and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in let old_rawprint = !Flags.raw_print in Flags.raw_print := true; Impargs.make_implicit_args false; Impargs.make_strict_implicit_args false; Impargs.make_contextual_implicit_args false; Impargs.make_contextual_implicit_args false; Dumpglob.pause (); try let res = f a in Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Dumpglob.continue (); res with | reraise -> Impargs.make_implicit_args old_implicit_args; Impargs.make_strict_implicit_args old_strict_implicit_args; Impargs.make_contextual_implicit_args old_contextual_implicit_args; Flags.raw_print := old_rawprint; Dumpglob.continue (); raise reraise (**********************) type function_info = { function_constant : constant; graph_ind : inductive; equation_lemma : constant option; correctness_lemma : constant option; completeness_lemma : constant option; rect_lemma : constant option; rec_lemma : constant option; prop_lemma : constant option; is_general : bool; (* Has this function been defined using general recursive definition *) } (* type function_db = function_info list *) (* let function_table = ref ([] : function_db) *) let from_function = ref Cmap.empty let from_graph = ref Indmap.empty (* let rec do_cache_info finfo = function | [] -> raise Not_found | (finfo'::finfos as l) -> if finfo' == finfo then l else if finfo'.function_constant = finfo.function_constant then finfo::finfos else let res = do_cache_info finfo finfos in if res == finfos then l else finfo'::l let cache_Function (_,(finfos)) = let new_tbl = try do_cache_info finfos !function_table with Not_found -> finfos::!function_table in if new_tbl != !function_table then function_table := new_tbl *) let cache_Function (_,finfos) = from_function := Cmap.add finfos.function_constant finfos !from_function; from_graph := Indmap.add finfos.graph_ind finfos !from_graph let load_Function _ = cache_Function let subst_Function (subst,finfos) = let do_subst_con c = fst (Mod_subst.subst_con subst c) and do_subst_ind (kn,i) = (Mod_subst.subst_ind subst kn,i) in let function_constant' = do_subst_con finfos.function_constant in let graph_ind' = do_subst_ind finfos.graph_ind in let equation_lemma' = Option.smartmap do_subst_con finfos.equation_lemma in let correctness_lemma' = Option.smartmap do_subst_con finfos.correctness_lemma in let completeness_lemma' = Option.smartmap do_subst_con finfos.completeness_lemma in let rect_lemma' = Option.smartmap do_subst_con finfos.rect_lemma in let rec_lemma' = Option.smartmap do_subst_con finfos.rec_lemma in let prop_lemma' = Option.smartmap do_subst_con finfos.prop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma then finfos else { function_constant = function_constant'; graph_ind = graph_ind'; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma' ; rect_lemma = rect_lemma' ; rec_lemma = rec_lemma'; prop_lemma = prop_lemma'; is_general = finfos.is_general } let classify_Function infos = Libobject.Substitute infos let discharge_Function (_,finfos) = let function_constant' = Lib.discharge_con finfos.function_constant and graph_ind' = Lib.discharge_inductive finfos.graph_ind and equation_lemma' = Option.smartmap Lib.discharge_con finfos.equation_lemma and correctness_lemma' = Option.smartmap Lib.discharge_con finfos.correctness_lemma and completeness_lemma' = Option.smartmap Lib.discharge_con finfos.completeness_lemma and rect_lemma' = Option.smartmap Lib.discharge_con finfos.rect_lemma and rec_lemma' = Option.smartmap Lib.discharge_con finfos.rec_lemma and prop_lemma' = Option.smartmap Lib.discharge_con finfos.prop_lemma in if function_constant' == finfos.function_constant && graph_ind' == finfos.graph_ind && equation_lemma' == finfos.equation_lemma && correctness_lemma' == finfos.correctness_lemma && completeness_lemma' == finfos.completeness_lemma && rect_lemma' == finfos.rect_lemma && rec_lemma' == finfos.rec_lemma && prop_lemma' == finfos.prop_lemma then Some finfos else Some { function_constant = function_constant' ; graph_ind = graph_ind' ; equation_lemma = equation_lemma' ; correctness_lemma = correctness_lemma' ; completeness_lemma = completeness_lemma'; rect_lemma = rect_lemma'; rec_lemma = rec_lemma'; prop_lemma = prop_lemma' ; is_general = finfos.is_general } open Term let pr_ocst c = Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) c (mt ()) let pr_info f_info = str "function_constant := " ++ Printer.pr_lconstr (mkConst f_info.function_constant)++ fnl () ++ str "function_constant_type := " ++ (try Printer.pr_lconstr (Global.type_of_global (ConstRef f_info.function_constant)) with e when Errors.noncritical e -> mt ()) ++ fnl () ++ str "equation_lemma := " ++ pr_ocst f_info.equation_lemma ++ fnl () ++ str "completeness_lemma :=" ++ pr_ocst f_info.completeness_lemma ++ fnl () ++ str "correctness_lemma := " ++ pr_ocst f_info.correctness_lemma ++ fnl () ++ str "rect_lemma := " ++ pr_ocst f_info.rect_lemma ++ fnl () ++ str "rec_lemma := " ++ pr_ocst f_info.rec_lemma ++ fnl () ++ str "prop_lemma := " ++ pr_ocst f_info.prop_lemma ++ fnl () ++ str "graph_ind := " ++ Printer.pr_lconstr (mkInd f_info.graph_ind) ++ fnl () let pr_table tb = let l = Cmap.fold (fun k v acc -> v::acc) tb [] in Pp.prlist_with_sep fnl pr_info l let in_Function : function_info -> Libobject.obj = Libobject.declare_object {(Libobject.default_object "FUNCTIONS_DB") with Libobject.cache_function = cache_Function; Libobject.load_function = load_Function; Libobject.classify_function = classify_Function; Libobject.subst_function = subst_Function; Libobject.discharge_function = discharge_Function (* Libobject.open_function = open_Function; *) } (* Synchronisation with reset *) let freeze () = !from_function,!from_graph let unfreeze (functions,graphs) = (* Pp.msgnl (str "unfreezing function_table : " ++ pr_table l); *) from_function := functions; from_graph := graphs let init () = (* Pp.msgnl (str "reseting function_table"); *) from_function := Cmap.empty; from_graph := Indmap.empty let _ = Summary.declare_summary "functions_db_sum" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init } let find_or_none id = try Some (match Nametab.locate (qualid_of_ident id) with ConstRef c -> c | _ -> Errors.anomaly (Pp.str "Not a constant") ) with Not_found -> None let find_Function_infos f = Cmap.find f !from_function let find_Function_of_graph ind = Indmap.find ind !from_graph let update_Function finfo = (* Pp.msgnl (pr_info finfo); *) Lib.add_anonymous_leaf (in_Function finfo) let add_Function is_general f = let f_id = Label.to_id (con_label f) in let equation_lemma = find_or_none (mk_equation_id f_id) and correctness_lemma = find_or_none (mk_correct_id f_id) and completeness_lemma = find_or_none (mk_complete_id f_id) and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect") and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec") and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind") and graph_ind = match Nametab.locate (qualid_of_ident (mk_rel_id f_id)) with | IndRef ind -> ind | _ -> Errors.anomaly (Pp.str "Not an inductive") in let finfos = { function_constant = f; equation_lemma = equation_lemma; completeness_lemma = completeness_lemma; correctness_lemma = correctness_lemma; rect_lemma = rect_lemma; rec_lemma = rec_lemma; prop_lemma = prop_lemma; graph_ind = graph_ind; is_general = is_general } in update_Function finfos let pr_table () = pr_table !from_function (*********************************) (* Debuging *) let functional_induction_rewrite_dependent_proofs = ref true let function_debug = ref false open Goptions let functional_induction_rewrite_dependent_proofs_sig = { optsync = false; optdepr = false; optname = "Functional Induction Rewrite Dependent"; optkey = ["Functional";"Induction";"Rewrite";"Dependent"]; optread = (fun () -> !functional_induction_rewrite_dependent_proofs); optwrite = (fun b -> functional_induction_rewrite_dependent_proofs := b) } let _ = declare_bool_option functional_induction_rewrite_dependent_proofs_sig let do_rewrite_dependent () = !functional_induction_rewrite_dependent_proofs = true let function_debug_sig = { optsync = false; optdepr = false; optname = "Function debug"; optkey = ["Function_debug"]; optread = (fun () -> !function_debug); optwrite = (fun b -> function_debug := b) } let _ = declare_bool_option function_debug_sig let do_observe () = !function_debug let strict_tcc = ref false let is_strict_tcc () = !strict_tcc let strict_tcc_sig = { optsync = false; optdepr = false; optname = "Raw Function Tcc"; optkey = ["Function_raw_tcc"]; optread = (fun () -> !strict_tcc); optwrite = (fun b -> strict_tcc := b) } let _ = declare_bool_option strict_tcc_sig exception Building_graph of exn exception Defining_principle of exn exception ToShow of exn let jmeq () = try Coqlib.check_required_library ["Coq";"Logic";"JMeq"]; Coqlib.gen_constant "Function" ["Logic";"JMeq"] "JMeq" with e when Errors.noncritical e -> raise (ToShow e) let jmeq_refl () = try Coqlib.check_required_library ["Coq";"Logic";"JMeq"]; Coqlib.gen_constant "Function" ["Logic";"JMeq"] "JMeq_refl" with e when Errors.noncritical e -> raise (ToShow e) let h_intros l = tclMAP h_intro l let h_id = Id.of_string "h" let hrec_id = Id.of_string "hrec" let well_founded = function () -> (coq_constant "well_founded") let acc_rel = function () -> (coq_constant "Acc") let acc_inv_id = function () -> (coq_constant "Acc_inv") let well_founded_ltof = function () -> (Coqlib.coq_constant "" ["Arith";"Wf_nat"] "well_founded_ltof") let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof") let evaluable_of_global_reference r = (* Tacred.evaluable_of_global_reference (Global.env ()) *) match r with ConstRef sp -> EvalConstRef sp | VarRef id -> EvalVarRef id | _ -> assert false;; let list_rewrite (rev:bool) (eqs: (constr*bool) list) = tclREPEAT (List.fold_right (fun (eq,b) i -> tclORELSE ((if b then Equality.rewriteLR else Equality.rewriteRL) eq) i) (if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));;