open Errors open Util open Names open Term open Pp open Indfun_common open Libnames open Globnames open Glob_term open Declarations open Misctypes open Decl_kinds let is_rec_info scheme_info = let test_branche min acc (_,_,br) = acc || ( let new_branche = it_mkProd_or_LetIn mkProp (fst (decompose_prod_assum br)) in let free_rels_in_br = Termops.free_rels new_branche in let max = min + scheme_info.Tactics.npredicates in Int.Set.exists (fun i -> i >= min && i< max) free_rels_in_br ) in List.fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches) let choose_dest_or_ind scheme_info = Tactics.induction_destruct (is_rec_info scheme_info) false let functional_induction with_clean c princl pat = Dumpglob.pause (); let res = let f,args = decompose_app c in fun g -> let princ,bindings, princ_type,g' = match princl with | None -> (* No principle is given let's find the good one *) begin match kind_of_term f with | Const (c',u) -> let princ_option = let finfo = (* we first try to find out a graph on f *) try find_Function_infos c' with Not_found -> errorlabstrm "" (str "Cannot find induction information on "++ Printer.pr_lconstr (mkConst c') ) in match Tacticals.elimination_sort_of_goal g with | InProp -> finfo.prop_lemma | InSet -> finfo.rec_lemma | InType -> finfo.rect_lemma in let princ,g' = (* then we get the principle *) try let g',princ = Tacmach.pf_eapply (Evd.fresh_global) g (Globnames.ConstRef (Option.get princ_option )) in princ,g' with Option.IsNone -> (*i If there is not default lemma defined then, we cross our finger and try to find a lemma named f_ind (or f_rec, f_rect) i*) let princ_name = Indrec.make_elimination_ident (Label.to_id (con_label c')) (Tacticals.elimination_sort_of_goal g) in try let princ_ref = const_of_id princ_name in let (a,b) = Tacmach.pf_eapply (Evd.fresh_global) g princ_ref in (b,a) (* mkConst(const_of_id princ_name ),g (\* FIXME *\) *) with Not_found -> (* This one is neither defined ! *) errorlabstrm "" (str "Cannot find induction principle for " ++Printer.pr_lconstr (mkConst c') ) in (princ,NoBindings, Tacmach.pf_unsafe_type_of g' princ,g') | _ -> raise (UserError("",str "functional induction must be used with a function" )) end | Some ((princ,binding)) -> princ,binding,Tacmach.pf_unsafe_type_of g princ,g in let princ_infos = Tactics.compute_elim_sig princ_type in let args_as_induction_constr = let c_list = if princ_infos.Tactics.farg_in_concl then [c] else [] in let encoded_pat_as_patlist = List.make (List.length args + List.length c_list - 1) None @ [pat] in List.map2 (fun c pat -> ((None,Tacexpr.ElimOnConstr (fun env sigma -> sigma,(c,NoBindings))),(None,pat),None)) (args@c_list) encoded_pat_as_patlist in let princ' = Some (princ,bindings) in let princ_vars = List.fold_right (fun a acc -> try Id.Set.add (destVar a) acc with DestKO -> acc) args Id.Set.empty in let old_idl = List.fold_right Id.Set.add (Tacmach.pf_ids_of_hyps g) Id.Set.empty in let old_idl = Id.Set.diff old_idl princ_vars in let subst_and_reduce g = if with_clean then let idl = List.filter (fun id -> not (Id.Set.mem id old_idl)) (Tacmach.pf_ids_of_hyps g) in let flag = Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false; } in Tacticals.tclTHEN (Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Proofview.V82.of_tactic (Equality.subst_gen (do_rewrite_dependent ()) [id]))) idl ) (Tactics.reduce flag Locusops.allHypsAndConcl) g else Tacticals.tclIDTAC g in Tacticals.tclTHEN (Proofview.V82.of_tactic (choose_dest_or_ind princ_infos (args_as_induction_constr,princ'))) subst_and_reduce g' in Dumpglob.continue (); res let rec abstract_glob_constr c = function | [] -> c | Constrexpr.LocalRawDef (x,b)::bl -> Constrexpr_ops.mkLetInC(x,b,abstract_glob_constr c bl) | Constrexpr.LocalRawAssum (idl,k,t)::bl -> List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl (abstract_glob_constr c bl) let interp_casted_constr_with_implicits env sigma impls c = Constrintern.intern_gen Pretyping.WithoutTypeConstraint env ~impls ~allow_patvar:false c (* Construct a fixpoint as a Glob_term and not as a constr *) let build_newrecursive lnameargsardef = let env0 = Global.env() and sigma = Evd.empty in let (rec_sign,rec_impls) = List.fold_left (fun (env,impls) (((_,recname),_),bl,arityc,_) -> let arityc = Constrexpr_ops.prod_constr_expr arityc bl in let arity,ctx = Constrintern.interp_type env0 sigma arityc in let evdref = ref (Evd.from_env env0) in let _, (_, impls') = Constrintern.interp_context_evars env evdref bl in let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity impls' in (Environ.push_named (recname,None,arity) env, Id.Map.add recname impl impls)) (env0,Constrintern.empty_internalization_env) lnameargsardef in let recdef = (* Declare local notations *) let f (_,bl,_,def) = let def = abstract_glob_constr def bl in interp_casted_constr_with_implicits rec_sign sigma rec_impls def in States.with_state_protection (List.map f) lnameargsardef in recdef,rec_impls let build_newrecursive l = let l' = List.map (fun ((fixna,_,bll,ar,body_opt),lnot) -> match body_opt with | Some body -> (fixna,bll,ar,body) | None -> user_err_loc (Loc.ghost,"Function",str "Body of Function must be given") ) l in build_newrecursive l' (* Checks whether or not the mutual bloc is recursive *) let is_rec names = let names = List.fold_right Id.Set.add names Id.Set.empty in let check_id id names = Id.Set.mem id names in let rec lookup names = function | GVar(_,id) -> check_id id names | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false | GCast(_,b,_) -> lookup names b | GRec _ -> error "GRec not handled" | GIf(_,b,_,lhs,rhs) -> (lookup names b) || (lookup names lhs) || (lookup names rhs) | GLetIn(_,na,t,b) | GLambda(_,na,_,t,b) | GProd(_,na,_,t,b) -> lookup names t || lookup (Nameops.name_fold Id.Set.remove na names) b | GLetTuple(_,nal,_,t,b) -> lookup names t || lookup (List.fold_left (fun acc na -> Nameops.name_fold Id.Set.remove na acc) names nal ) b | GApp(_,f,args) -> List.exists (lookup names) (f::args) | GCases(_,_,_,el,brl) -> List.exists (fun (e,_) -> lookup names e) el || List.exists (lookup_br names) brl and lookup_br names (_,idl,_,rt) = let new_names = List.fold_right Id.Set.remove idl names in lookup new_names rt in lookup names let rec local_binders_length = function (* Assume that no `{ ... } contexts occur *) | [] -> 0 | Constrexpr.LocalRawDef _::bl -> 1 + local_binders_length bl | Constrexpr.LocalRawAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl let prepare_body ((name,_,args,types,_),_) rt = let n = local_binders_length args in (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) let fun_args,rt' = chop_rlambda_n n rt in (fun_args,rt') let process_vernac_interp_error e = fst (Cerrors.process_vernac_interp_error (e, Exninfo.null)) let derive_inversion fix_names = try let evd' = Evd.empty in (* we first transform the fix_names identifier into their corresponding constant *) let evd',fix_names_as_constant = List.fold_right (fun id (evd,l) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in evd, destConst c::l ) fix_names (evd',[]) in (* Then we check that the graphs have been defined If one of the graphs haven't been defined we do nothing *) List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ; try let evd', lind = List.fold_right (fun id (evd,l) -> let evd,id = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) in evd,(fst (destInd id))::l ) fix_names (evd',[]) in Invfun.derive_correctness Functional_principles_types.make_scheme functional_induction fix_names_as_constant lind; with e when Errors.noncritical e -> let e' = process_vernac_interp_error e in msg_warning (str "Cannot build inversion information" ++ if do_observe () then (fnl() ++ Errors.print e') else mt ()) with e when Errors.noncritical e -> let e' = process_vernac_interp_error e in msg_warning (str "Cannot build inversion information (early)" ++ if do_observe () then (fnl() ++ Errors.print e') else mt ()) let warning_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> let e = process_vernac_interp_error e in spc () ++ Errors.print e | _ -> if do_observe () then let e = process_vernac_interp_error e in (spc () ++ Errors.print e) else mt () in match e with | Building_graph e -> Pp.msg_warning (str "Cannot define graph(s) for " ++ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ e_explain e) | Defining_principle e -> Pp.msg_warning (str "Cannot define principle(s) for "++ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ e_explain e) | _ -> raise e let error_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> spc () ++ Errors.print e | _ -> if do_observe () then (spc () ++ Errors.print e) else mt () in match e with | Building_graph e -> errorlabstrm "" (str "Cannot define graph(s) for " ++ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ e_explain e) | _ -> raise e let generate_principle (evd:Evd.evar_map ref) pconstants on_error is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof (continue_proof : int -> Names.constant array -> Term.constr array -> int -> Tacmach.tactic) : unit = let names = List.map (function (((_, name),_),_,_,_,_),_ -> name) fix_rec_l in let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in let funs_args = List.map fst fun_bodies in let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in try (* We then register the Inductive graphs of the functions *) Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; if do_built then begin (*i The next call to mk_rel_id is valid since we have just construct the graph Ensures by : do_built i*) let f_R_mut = Ident (Loc.ghost,mk_rel_id (List.nth names 0)) in let ind_kn = fst (locate_with_msg (pr_reference f_R_mut++str ": Not an inductive type!") locate_ind f_R_mut) in let fname_kn (((fname,_),_,_,_,_),_) = let f_ref = Ident fname in locate_with_msg (pr_reference f_ref++str ": Not an inductive type!") locate_constant f_ref in let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in let _ = List.map_i (fun i x -> let princ = Indrec.lookup_eliminator (ind_kn,i) (InProp) in let evd',uprinc = Evd.fresh_global (Global.env ()) !evd princ in let _ = evd := evd' in let princ_type = Typing.e_type_of ~refresh:true (Global.env ()) evd uprinc in Functional_principles_types.generate_functional_principle evd interactive_proof princ_type None None (Array.of_list pconstants) (* funs_kn *) i (continue_proof 0 [|funs_kn.(i)|]) ) 0 fix_rec_l in Array.iter (add_Function is_general) funs_kn; () end with e when Errors.noncritical e -> on_error names e let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = match fixpoint_exprl with | [(((_,fname),pl),_,bl,ret_type,body),_] when not is_rec -> let body = match body with | Some body -> body | None -> user_err_loc (Loc.ghost,"Function",str "Body of Function must be given") in Command.do_definition fname (Decl_kinds.Global,(Flags.is_universe_polymorphism ()),Decl_kinds.Definition) pl bl None body (Some ret_type) (Lemmas.mk_hook (fun _ _ -> ())); let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in evd,((destConst c)::l) ) (Evd.empty,[]) fixpoint_exprl in evd,List.rev rev_pconstants | _ -> Command.do_fixpoint Global (Flags.is_universe_polymorphism ()) fixpoint_exprl; let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in evd,((destConst c)::l) ) (Evd.empty,[]) fixpoint_exprl in evd,List.rev rev_pconstants let generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation (_: int) (_:Names.constant array) (_:Term.constr array) (_:int) : Tacmach.tactic = Functional_principles_proofs.prove_principle_for_gen (f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body pre_hook = let type_of_f = Constrexpr_ops.prod_constr_expr ret_type args in let rec_arg_num = let names = List.map snd (Constrexpr_ops.names_of_local_assums args) in match wf_arg with | None -> if Int.equal (List.length names) 1 then 1 else error "Recursive argument must be specified" | Some wf_arg -> List.index Name.equal (Name wf_arg) names in let unbounded_eq = let f_app_args = Constrexpr.CAppExpl (Loc.ghost, (None,(Ident (Loc.ghost,fname)),None) , (List.map (function | _,Anonymous -> assert false | _,Name e -> (Constrexpr_ops.mkIdentC e) ) (Constrexpr_ops.names_of_local_assums args) ) ) in Constrexpr.CApp (Loc.ghost,(None,Constrexpr_ops.mkRefC (Qualid (Loc.ghost,(qualid_of_string "Logic.eq")))), [(f_app_args,None);(body,None)]) in let eq = Constrexpr_ops.prod_constr_expr unbounded_eq args in let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type nb_args relation = try pre_hook [fconst] (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation ); derive_inversion [fname] with e when Errors.noncritical e -> (* No proof done *) () in Recdef.recursive_definition is_mes fname rec_impls type_of_f wf_rel_expr rec_arg_num eq hook using_lemmas let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = let wf_arg_type,wf_arg = match wf_arg with | None -> begin match args with | [Constrexpr.LocalRawAssum ([(_,Name x)],k,t)] -> t,x | _ -> error "Recursive argument must be specified" end | Some wf_args -> try match List.find (function | Constrexpr.LocalRawAssum(l,k,t) -> List.exists (function (_,Name id) -> Id.equal id wf_args | _ -> false) l | _ -> false ) args with | Constrexpr.LocalRawAssum(_,k,t) -> t,wf_args | _ -> assert false with Not_found -> assert false in let wf_rel_from_mes,is_mes = match wf_rel_expr_opt with | None -> let ltof = let make_dir l = DirPath.make (List.rev_map Id.of_string l) in Libnames.Qualid (Loc.ghost,Libnames.qualid_of_path (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof"))) in let fun_from_mes = let applied_mes = Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in Constrexpr_ops.mkLambdaC ([(Loc.ghost,Name wf_arg)],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes) in let wf_rel_from_mes = Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes]) in wf_rel_from_mes,true | Some wf_rel_expr -> let wf_rel_with_mes = let a = Names.Id.of_string "___a" in let b = Names.Id.of_string "___b" in Constrexpr_ops.mkLambdaC( [Loc.ghost,Name a;Loc.ghost,Name b], Constrexpr.Default Explicit, wf_arg_type, Constrexpr_ops.mkAppC(wf_rel_expr, [ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]); Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b]) ]) ) in wf_rel_with_mes,false in register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg) using_lemmas args ret_type body let map_option f = function | None -> None | Some v -> Some (f v) open Constrexpr open Topconstr let make_assoc assoc l1 l2 = let fold assoc a b = match a, b with | (_, Name na), (_, Name id) -> Id.Map.add na id assoc | _, _ -> assoc in List.fold_left2 fold assoc l1 l2 let rec rebuild_bl (aux,assoc) bl typ = match bl,typ with | [], _ -> (List.rev aux,replace_vars_constr_expr assoc typ,assoc) | (Constrexpr.LocalRawAssum(nal,bk,_))::bl',typ -> rebuild_nal (aux,assoc) bk bl' nal (List.length nal) typ | (Constrexpr.LocalRawDef(na,_))::bl',Constrexpr.CLetIn(_,_,nat,typ') -> rebuild_bl ((Constrexpr.LocalRawDef(na,replace_vars_constr_expr assoc nat)::aux),assoc) bl' typ' | _ -> assert false and rebuild_nal (aux,assoc) bk bl' nal lnal typ = match nal,typ with | [], _ -> rebuild_bl (aux,assoc) bl' typ | _,CProdN(_,[],typ) -> rebuild_nal (aux,assoc) bk bl' nal lnal typ | _,CProdN(_,(nal',bk',nal't)::rest,typ') -> let lnal' = List.length nal' in if lnal' >= lnal then let old_nal',new_nal' = List.chop lnal nal' in let nassoc = make_assoc assoc old_nal' nal in let assum = LocalRawAssum(nal,bk,replace_vars_constr_expr assoc nal't) in rebuild_bl ((assum :: aux), nassoc) bl' (if List.is_empty new_nal' && List.is_empty rest then typ' else if List.is_empty new_nal' then CProdN(Loc.ghost,rest,typ') else CProdN(Loc.ghost,((new_nal',bk',nal't)::rest),typ')) else let captured_nal,non_captured_nal = List.chop lnal' nal in let nassoc = make_assoc assoc nal' captured_nal in let assum = LocalRawAssum(captured_nal,bk,replace_vars_constr_expr assoc nal't) in rebuild_nal ((assum :: aux), nassoc) bk bl' non_captured_nal (lnal - lnal') (CProdN(Loc.ghost,rest,typ')) | _ -> assert false let rebuild_bl (aux,assoc) bl typ = rebuild_bl (aux,assoc) bl typ let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in let ((_,_,typel),_,_) = Command.interp_fixpoint fixl ntns in let constr_expr_typel = with_full_print (List.map (Constrextern.extern_constr false (Global.env ()) Evd.empty)) typel in let fixpoint_exprl_with_new_bl = List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ -> let new_bl',new_ret_type,_ = rebuild_bl ([],Id.Map.empty) bl fix_typ in (((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixpoint_exprl constr_expr_typel in fixpoint_exprl_with_new_bl let do_generate_principle pconstants on_error register_built interactive_proof (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit = List.iter (fun (_,l) -> if not (List.is_empty l) then error "Function does not support notations for now") fixpoint_exprl; let _is_struct = match fixpoint_exprl with | [((_,(wf_x,Constrexpr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] -> let (((((_,name),pl),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let body = match body with | Some body -> body | None -> user_err_loc (Loc.ghost,"Function",str "Body of Function must be given") in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let pre_hook pconstants = generate_principle (ref (Evd.empty)) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook; false |[((_,(wf_x,Constrexpr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] -> let (((((_,name),_),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let body = match body with | Some body -> body | None -> user_err_loc (Loc.ghost,"Function",str "Body of Function must be given") in let pre_hook pconstants = generate_principle (ref Evd.empty) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook; true | _ -> List.iter (function ((_na,(_,ord),_args,_body,_type),_not) -> match ord with | Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _ -> error ("Cannot use mutual definition with well-founded recursion or measure") | _ -> () ) fixpoint_exprl; let fixpoint_exprl = recompute_binder_list fixpoint_exprl in let fix_names = List.map (function ((((_,name),_),_,_,_,_),_) -> name) fixpoint_exprl in (* ok all the expressions are structural *) let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let is_rec = List.exists (is_rec fix_names) recdefs in let evd,pconstants = if register_built then register_struct is_rec fixpoint_exprl else (Evd.empty,pconstants) in let evd = ref evd in generate_principle (ref !evd) pconstants on_error false register_built fixpoint_exprl recdefs interactive_proof (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); if register_built then begin derive_inversion fix_names; end; true; in () let rec add_args id new_args b = match b with | CRef (r,_) -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl(Loc.ghost,(None,r,None),new_args) | _ -> b end | CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo") | CProdN(loc,nal,b1) -> CProdN(loc, List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLambdaN(loc,nal,b1) -> CLambdaN(loc, List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLetIn(loc,na,b1,b2) -> CLetIn(loc,na,add_args id new_args b1,add_args id new_args b2) | CAppExpl(loc,(pf,r,us),exprl) -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl(loc,(pf,r,us),new_args@(List.map (add_args id new_args) exprl)) | _ -> CAppExpl(loc,(pf,r,us),List.map (add_args id new_args) exprl) end | CApp(loc,(pf,b),bl) -> CApp(loc,(pf,add_args id new_args b), List.map (fun (e,o) -> add_args id new_args e,o) bl) | CCases(loc,sty,b_option,cel,cal) -> CCases(loc,sty,Option.map (add_args id new_args) b_option, List.map (fun (b,(na,b_option)) -> add_args id new_args b, (na, b_option)) cel, List.map (fun (loc,cpl,e) -> (loc,cpl,add_args id new_args e)) cal ) | CLetTuple(loc,nal,(na,b_option),b1,b2) -> CLetTuple(loc,nal,(na,Option.map (add_args id new_args) b_option), add_args id new_args b1, add_args id new_args b2 ) | CIf(loc,b1,(na,b_option),b2,b3) -> CIf(loc,add_args id new_args b1, (na,Option.map (add_args id new_args) b_option), add_args id new_args b2, add_args id new_args b3 ) | CHole _ -> b | CPatVar _ -> b | CEvar _ -> b | CSort _ -> b | CCast(loc,b1,b2) -> CCast(loc,add_args id new_args b1, Miscops.map_cast_type (add_args id new_args) b2) | CRecord (loc, w, pars) -> CRecord (loc, (match w with Some w -> Some (add_args id new_args w) | _ -> None), List.map (fun (e,o) -> e, add_args id new_args o) pars) | CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation") | CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization") | CPrim _ -> b | CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters") exception Stop of Constrexpr.constr_expr (* [chop_n_arrow n t] chops the [n] first arrows in [t] Acts on Constrexpr.constr_expr *) let rec chop_n_arrow n t = if n <= 0 then t (* If we have already removed all the arrows then return the type *) else (* If not we check the form of [t] *) match t with | Constrexpr.CProdN(_,nal_ta',t') -> (* If we have a forall, to result are possible : either we need to discard more than the number of arrows contained in this product declaration then we just recall [chop_n_arrow] on the remaining number of arrow to chop and [t'] we discard it and recall [chop_n_arrow], either this product contains more arrows than the number we need to chop and then we return the new type *) begin try let new_n = let rec aux (n:int) = function [] -> n | (nal,k,t'')::nal_ta' -> let nal_l = List.length nal in if n >= nal_l then aux (n - nal_l) nal_ta' else let new_t' = Constrexpr.CProdN(Loc.ghost, ((snd (List.chop n nal)),k,t'')::nal_ta',t') in raise (Stop new_t') in aux n nal_ta' in chop_n_arrow new_n t' with Stop t -> t end | _ -> anomaly (Pp.str "Not enough products") let rec get_args b t : Constrexpr.local_binder list * Constrexpr.constr_expr * Constrexpr.constr_expr = match b with | Constrexpr.CLambdaN (loc, (nal_ta), b') -> begin let n = (List.fold_left (fun n (nal,_,_) -> n+List.length nal) 0 nal_ta ) in let nal_tas,b'',t'' = get_args b' (chop_n_arrow n t) in (List.map (fun (nal,k,ta) -> (Constrexpr.LocalRawAssum (nal,k,ta))) nal_ta)@nal_tas, b'',t'' end | _ -> [],b,t let make_graph (f_ref:global_reference) = let c,c_body = match f_ref with | ConstRef c -> begin try c,Global.lookup_constant c with Not_found -> raise (UserError ("",str "Cannot find " ++ Printer.pr_lconstr (mkConst c)) ) end | _ -> raise (UserError ("", str "Not a function reference") ) in Dumpglob.pause (); (match Global.body_of_constant_body c_body with | None -> error "Cannot build a graph over an axiom !" | Some body -> let env = Global.env () in let extern_body,extern_type = with_full_print (fun () -> (Constrextern.extern_constr false env Evd.empty body, Constrextern.extern_type false env Evd.empty ((*FIXME*) Typeops.type_of_constant_type env c_body.const_type) ) ) () in let (nal_tas,b,t) = get_args extern_body extern_type in let expr_list = match b with | Constrexpr.CFix(loc,l_id,fixexprl) -> let l = List.map (fun (id,(n,recexp),bl,t,b) -> let loc, rec_id = Option.get n in let new_args = List.flatten (List.map (function | Constrexpr.LocalRawDef (na,_)-> [] | Constrexpr.LocalRawAssum (nal,_,_) -> List.map (fun (loc,n) -> CRef(Libnames.Ident(loc, Nameops.out_name n),None)) nal ) nal_tas ) in let b' = add_args (snd id) new_args b in ((((id,None), ( Some (Loc.ghost,rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixexprl in l | _ -> let id = Label.to_id (con_label c) in [(((Loc.ghost,id),None),(None,Constrexpr.CStructRec),nal_tas,t,Some b),[]] in let mp,dp,_ = repr_con c in do_generate_principle [c,Univ.Instance.empty] error_error false false expr_list; (* We register the infos *) List.iter (fun ((((_,id),_),_,_,_,_),_) -> add_Function false (make_con mp dp (Label.of_id id))) expr_list); Dumpglob.continue () let do_generate_principle = do_generate_principle [] warning_error true