open API open CErrors open Util open Names open Term open EConstr open Pp open Indfun_common open Libnames open Globnames open Glob_term open Declarations open Misctypes open Decl_kinds module RelDecl = Context.Rel.Declaration let is_rec_info sigma scheme_info = let test_branche min acc decl = acc || ( let new_branche = it_mkProd_or_LetIn mkProp (fst (decompose_prod_assum sigma (RelDecl.get_type decl))) in let free_rels_in_br = Termops.free_rels sigma new_branche in let max = min + scheme_info.Tactics.npredicates in Int.Set.exists (fun i -> i >= min && i< max) free_rels_in_br ) in List.fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches) let choose_dest_or_ind scheme_info args = Proofview.tclBIND Proofview.tclEVARMAP (fun sigma -> Tactics.induction_destruct (is_rec_info sigma scheme_info) false args) let functional_induction with_clean c princl pat = let res = fun g -> let sigma = Tacmach.project g in let f,args = decompose_app sigma c in let princ,bindings, princ_type,g' = match princl with | None -> (* No principle is given let's find the good one *) begin match EConstr.kind sigma f with | Const (c',u) -> let princ_option = let finfo = (* we first try to find out a graph on f *) try find_Function_infos c' with Not_found -> user_err (str "Cannot find induction information on "++ Printer.pr_leconstr (mkConst c') ) in match Tacticals.elimination_sort_of_goal g with | InProp -> finfo.prop_lemma | InSet -> finfo.rec_lemma | InType -> finfo.rect_lemma in let princ,g' = (* then we get the principle *) try let g',princ = Tacmach.pf_eapply (Evd.fresh_global) g (Globnames.ConstRef (Option.get princ_option )) in princ,g' with Option.IsNone -> (*i If there is not default lemma defined then, we cross our finger and try to find a lemma named f_ind (or f_rec, f_rect) i*) let princ_name = Indrec.make_elimination_ident (Label.to_id (Constant.label c')) (Tacticals.elimination_sort_of_goal g) in try let princ_ref = const_of_id princ_name in let (a,b) = Tacmach.pf_eapply (Evd.fresh_global) g princ_ref in (b,a) (* mkConst(const_of_id princ_name ),g (\* FIXME *\) *) with Not_found -> (* This one is neither defined ! *) user_err (str "Cannot find induction principle for " ++Printer.pr_leconstr (mkConst c') ) in let princ = EConstr.of_constr princ in (princ,NoBindings,Tacmach.pf_unsafe_type_of g' princ,g') | _ -> raise (UserError(None,str "functional induction must be used with a function" )) end | Some ((princ,binding)) -> princ,binding,Tacmach.pf_unsafe_type_of g princ,g in let sigma = Tacmach.project g' in let princ_infos = Tactics.compute_elim_sig (Tacmach.project g') princ_type in let args_as_induction_constr = let c_list = if princ_infos.Tactics.farg_in_concl then [c] else [] in let encoded_pat_as_patlist = List.make (List.length args + List.length c_list - 1) None @ [pat] in List.map2 (fun c pat -> ((None,Tacexpr.ElimOnConstr (fun env sigma -> (sigma,(c,NoBindings)) )),(None,pat),None)) (args@c_list) encoded_pat_as_patlist in let princ' = Some (princ,bindings) in let princ_vars = List.fold_right (fun a acc -> try Id.Set.add (destVar sigma a) acc with DestKO -> acc) args Id.Set.empty in let old_idl = List.fold_right Id.Set.add (Tacmach.pf_ids_of_hyps g) Id.Set.empty in let old_idl = Id.Set.diff old_idl princ_vars in let subst_and_reduce g = if with_clean then let idl = List.filter (fun id -> not (Id.Set.mem id old_idl)) (Tacmach.pf_ids_of_hyps g) in let flag = Genredexpr.Cbv {Redops.all_flags with Genredexpr.rDelta = false; } in Tacticals.tclTHEN (Tacticals.tclMAP (fun id -> Tacticals.tclTRY (Proofview.V82.of_tactic (Equality.subst_gen (do_rewrite_dependent ()) [id]))) idl ) (Proofview.V82.of_tactic (Tactics.reduce flag Locusops.allHypsAndConcl)) g else Tacticals.tclIDTAC g in Tacticals.tclTHEN (Proofview.V82.of_tactic (choose_dest_or_ind princ_infos (args_as_induction_constr,princ'))) subst_and_reduce g' in res let rec abstract_glob_constr c = function | [] -> c | Constrexpr.CLocalDef (x,b,t)::bl -> Constrexpr_ops.mkLetInC(x,b,t,abstract_glob_constr c bl) | Constrexpr.CLocalAssum (idl,k,t)::bl -> List.fold_right (fun x b -> Constrexpr_ops.mkLambdaC([x],k,t,b)) idl (abstract_glob_constr c bl) | Constrexpr.CLocalPattern _::bl -> assert false let interp_casted_constr_with_implicits env sigma impls c = Constrintern.intern_gen Pretyping.WithoutTypeConstraint env ~impls c (* Construct a fixpoint as a Glob_term and not as a constr *) let build_newrecursive lnameargsardef = let env0 = Global.env() in let sigma = Evd.from_env env0 in let (rec_sign,rec_impls) = List.fold_left (fun (env,impls) (((_,recname),_),bl,arityc,_) -> let arityc = Constrexpr_ops.mkCProdN bl arityc in let arity,ctx = Constrintern.interp_type env0 sigma arityc in let evdref = ref (Evd.from_env env0) in let _, (_, impls') = Constrintern.interp_context_evars env evdref bl in let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity impls' in let open Context.Named.Declaration in (Environ.push_named (LocalAssum (recname,arity)) env, Id.Map.add recname impl impls)) (env0,Constrintern.empty_internalization_env) lnameargsardef in let recdef = (* Declare local notations *) let f (_,bl,_,def) = let def = abstract_glob_constr def bl in interp_casted_constr_with_implicits rec_sign sigma rec_impls def in States.with_state_protection (List.map f) lnameargsardef in recdef,rec_impls let build_newrecursive l = let l' = List.map (fun ((fixna,_,bll,ar,body_opt),lnot) -> match body_opt with | Some body -> (fixna,bll,ar,body) | None -> user_err ~hdr:"Function" (str "Body of Function must be given") ) l in build_newrecursive l' let error msg = user_err Pp.(str msg) (* Checks whether or not the mutual bloc is recursive *) let is_rec names = let names = List.fold_right Id.Set.add names Id.Set.empty in let check_id id names = Id.Set.mem id names in let rec lookup names gt = match gt.CAst.v with | GVar(id) -> check_id id names | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false | GCast(b,_) -> lookup names b | GRec _ -> error "GRec not handled" | GIf(b,_,lhs,rhs) -> (lookup names b) || (lookup names lhs) || (lookup names rhs) | GProd(na,_,t,b) | GLambda(na,_,t,b) -> lookup names t || lookup (Nameops.Name.fold_right Id.Set.remove na names) b | GLetIn(na,b,t,c) -> lookup names b || Option.cata (lookup names) true t || lookup (Nameops.Name.fold_right Id.Set.remove na names) c | GLetTuple(nal,_,t,b) -> lookup names t || lookup (List.fold_left (fun acc na -> Nameops.Name.fold_right Id.Set.remove na acc) names nal ) b | GApp(f,args) -> List.exists (lookup names) (f::args) | GCases(_,_,el,brl) -> List.exists (fun (e,_) -> lookup names e) el || List.exists (lookup_br names) brl and lookup_br names (_,(idl,_,rt)) = let new_names = List.fold_right Id.Set.remove idl names in lookup new_names rt in lookup names let rec local_binders_length = function (* Assume that no `{ ... } contexts occur *) | [] -> 0 | Constrexpr.CLocalDef _::bl -> 1 + local_binders_length bl | Constrexpr.CLocalAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl | Constrexpr.CLocalPattern _::bl -> assert false let prepare_body ((name,_,args,types,_),_) rt = let n = local_binders_length args in (* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *) let fun_args,rt' = chop_rlambda_n n rt in (fun_args,rt') let process_vernac_interp_error e = fst (ExplainErr.process_vernac_interp_error (e, Exninfo.null)) let warn_funind_cannot_build_inversion = CWarnings.create ~name:"funind-cannot-build-inversion" ~category:"funind" (fun e' -> strbrk "Cannot build inversion information" ++ if do_observe () then (fnl() ++ CErrors.print e') else mt ()) let derive_inversion fix_names = try let evd' = Evd.from_env (Global.env ()) in (* we first transform the fix_names identifier into their corresponding constant *) let evd',fix_names_as_constant = List.fold_right (fun id (evd,l) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident id)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in evd, (cst, EInstance.kind evd u) :: l ) fix_names (evd',[]) in (* Then we check that the graphs have been defined If one of the graphs haven't been defined we do nothing *) List.iter (fun c -> ignore (find_Function_infos (fst c))) fix_names_as_constant ; try let evd', lind = List.fold_right (fun id (evd,l) -> let evd,id = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident (mk_rel_id id))) in let id = EConstr.of_constr id in evd,(fst (destInd evd id))::l ) fix_names (evd',[]) in Invfun.derive_correctness Functional_principles_types.make_scheme functional_induction fix_names_as_constant lind; with e when CErrors.noncritical e -> let e' = process_vernac_interp_error e in warn_funind_cannot_build_inversion e' with e when CErrors.noncritical e -> let e' = process_vernac_interp_error e in warn_funind_cannot_build_inversion e' let warn_cannot_define_graph = CWarnings.create ~name:"funind-cannot-define-graph" ~category:"funind" (fun (names,error) -> strbrk "Cannot define graph(s) for " ++ h 1 names ++ error) let warn_cannot_define_principle = CWarnings.create ~name:"funind-cannot-define-principle" ~category:"funind" (fun (names,error) -> strbrk "Cannot define induction principle(s) for "++ h 1 names ++ error) let warning_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> let e = process_vernac_interp_error e in spc () ++ CErrors.print e | _ -> if do_observe () then let e = process_vernac_interp_error e in (spc () ++ CErrors.print e) else mt () in match e with | Building_graph e -> let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in warn_cannot_define_graph (names,e_explain e) | Defining_principle e -> let names = prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names in warn_cannot_define_principle (names,e_explain e) | _ -> raise e let error_error names e = let e = process_vernac_interp_error e in let e_explain e = match e with | ToShow e -> spc () ++ CErrors.print e | _ -> if do_observe () then (spc () ++ CErrors.print e) else mt () in match e with | Building_graph e -> user_err (str "Cannot define graph(s) for " ++ h 1 (prlist_with_sep (fun _ -> str","++spc ()) Ppconstr.pr_id names) ++ e_explain e) | _ -> raise e let generate_principle (evd:Evd.evar_map ref) pconstants on_error is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof (continue_proof : int -> Names.Constant.t array -> EConstr.constr array -> int -> Tacmach.tactic) : unit = let names = List.map (function (((_, name),_),_,_,_,_),_ -> name) fix_rec_l in let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in let funs_args = List.map fst fun_bodies in let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in try (* We then register the Inductive graphs of the functions *) Glob_term_to_relation.build_inductive !evd pconstants funs_args funs_types recdefs; if do_built then begin (*i The next call to mk_rel_id is valid since we have just construct the graph Ensures by : do_built i*) let f_R_mut = Ident (Loc.tag @@ mk_rel_id (List.nth names 0)) in let ind_kn = fst (locate_with_msg (pr_reference f_R_mut++str ": Not an inductive type!") locate_ind f_R_mut) in let fname_kn (((fname,_),_,_,_,_),_) = let f_ref = Ident fname in locate_with_msg (pr_reference f_ref++str ": Not an inductive type!") locate_constant f_ref in let funs_kn = Array.of_list (List.map fname_kn fix_rec_l) in let _ = List.map_i (fun i x -> let princ = Indrec.lookup_eliminator (ind_kn,i) (InProp) in let env = Global.env () in let evd = ref (Evd.from_env env) in let evd',uprinc = Evd.fresh_global env !evd princ in let _ = evd := evd' in let princ_type = Typing.e_type_of ~refresh:true env evd (EConstr.of_constr uprinc) in let princ_type = EConstr.Unsafe.to_constr princ_type in Functional_principles_types.generate_functional_principle evd interactive_proof princ_type None None (Array.of_list pconstants) (* funs_kn *) i (continue_proof 0 [|funs_kn.(i)|]) ) 0 fix_rec_l in Array.iter (add_Function is_general) funs_kn; () end with e when CErrors.noncritical e -> on_error names e let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = match fixpoint_exprl with | [(((_,fname),pl),_,bl,ret_type,body),_] when not is_rec -> let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in Command.do_definition fname (Decl_kinds.Global,(Flags.is_universe_polymorphism ()),Decl_kinds.Definition) pl bl None body (Some ret_type) (Lemmas.mk_hook (fun _ _ -> ())); let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) ) (Evd.from_env (Global.env ()),[]) fixpoint_exprl in evd,List.rev rev_pconstants | _ -> Command.do_fixpoint Global (Flags.is_universe_polymorphism ()) fixpoint_exprl; let evd,rev_pconstants = List.fold_left (fun (evd,l) ((((_,fname),_),_,_,_,_),_) -> let evd,c = Evd.fresh_global (Global.env ()) evd (Constrintern.locate_reference (Libnames.qualid_of_ident fname)) in let c = EConstr.of_constr c in let (cst, u) = destConst evd c in let u = EInstance.kind evd u in evd,((cst, u) :: l) ) (Evd.from_env (Global.env ()),[]) fixpoint_exprl in evd,List.rev rev_pconstants let generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation (_: int) (_:Names.Constant.t array) (_:EConstr.constr array) (_:int) : Tacmach.tactic = Functional_principles_proofs.prove_principle_for_gen (f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes rec_arg_num rec_arg_type relation let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas args ret_type body pre_hook = let type_of_f = Constrexpr_ops.mkCProdN args ret_type in let rec_arg_num = let names = List.map snd (Constrexpr_ops.names_of_local_assums args) in match wf_arg with | None -> if Int.equal (List.length names) 1 then 1 else error "Recursive argument must be specified" | Some wf_arg -> List.index Name.equal (Name wf_arg) names in let unbounded_eq = let f_app_args = CAst.make @@ Constrexpr.CAppExpl( (None,(Ident (Loc.tag fname)),None) , (List.map (function | _,Anonymous -> assert false | _,Name e -> (Constrexpr_ops.mkIdentC e) ) (Constrexpr_ops.names_of_local_assums args) ) ) in CAst.make @@ Constrexpr.CApp ((None,Constrexpr_ops.mkRefC (Qualid (Loc.tag (qualid_of_string "Logic.eq")))), [(f_app_args,None);(body,None)]) in let eq = Constrexpr_ops.mkCProdN args unbounded_eq in let hook ((f_ref,_) as fconst) tcc_lemma_ref (functional_ref,_) (eq_ref,_) rec_arg_num rec_arg_type nb_args relation = try pre_hook [fconst] (generate_correction_proof_wf f_ref tcc_lemma_ref is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation ); derive_inversion [fname] with e when CErrors.noncritical e -> (* No proof done *) () in Recdef.recursive_definition is_mes fname rec_impls type_of_f wf_rel_expr rec_arg_num eq hook using_lemmas let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body = let wf_arg_type,wf_arg = match wf_arg with | None -> begin match args with | [Constrexpr.CLocalAssum ([(_,Name x)],k,t)] -> t,x | _ -> error "Recursive argument must be specified" end | Some wf_args -> try match List.find (function | Constrexpr.CLocalAssum(l,k,t) -> List.exists (function (_,Name id) -> Id.equal id wf_args | _ -> false) l | _ -> false ) args with | Constrexpr.CLocalAssum(_,k,t) -> t,wf_args | _ -> assert false with Not_found -> assert false in let wf_rel_from_mes,is_mes = match wf_rel_expr_opt with | None -> let ltof = let make_dir l = DirPath.make (List.rev_map Id.of_string l) in Libnames.Qualid (Loc.tag @@ Libnames.qualid_of_path (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (Id.of_string "ltof"))) in let fun_from_mes = let applied_mes = Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC wf_arg]) in Constrexpr_ops.mkLambdaC ([(Loc.tag @@ Name wf_arg)],Constrexpr_ops.default_binder_kind,wf_arg_type,applied_mes) in let wf_rel_from_mes = Constrexpr_ops.mkAppC(Constrexpr_ops.mkRefC ltof,[wf_arg_type;fun_from_mes]) in wf_rel_from_mes,true | Some wf_rel_expr -> let wf_rel_with_mes = let a = Names.Id.of_string "___a" in let b = Names.Id.of_string "___b" in Constrexpr_ops.mkLambdaC( [Loc.tag @@ Name a;Loc.tag @@ Name b], Constrexpr.Default Explicit, wf_arg_type, Constrexpr_ops.mkAppC(wf_rel_expr, [ Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC a]); Constrexpr_ops.mkAppC(wf_mes_expr,[Constrexpr_ops.mkIdentC b]) ]) ) in wf_rel_with_mes,false in register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg) using_lemmas args ret_type body let map_option f = function | None -> None | Some v -> Some (f v) open Constrexpr let rec rebuild_bl aux bl typ = match bl,typ with | [], _ -> List.rev aux,typ | (CLocalAssum(nal,bk,_))::bl',typ -> rebuild_nal aux bk bl' nal typ | (CLocalDef(na,_,_))::bl',{ CAst.v = CLetIn(_,nat,ty,typ') } -> rebuild_bl (Constrexpr.CLocalDef(na,nat,ty)::aux) bl' typ' | _ -> assert false and rebuild_nal aux bk bl' nal typ = match nal,typ with | _,{ CAst.v = CProdN([],typ) } -> rebuild_nal aux bk bl' nal typ | [], _ -> rebuild_bl aux bl' typ | na::nal,{ CAst.v = CProdN((na'::nal',bk',nal't)::rest,typ') } -> if Name.equal (snd na) (snd na') || Name.is_anonymous (snd na') then let assum = CLocalAssum([na],bk,nal't) in let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in rebuild_nal (assum::aux) bk bl' nal (CAst.make @@ CProdN(new_rest,typ')) else let assum = CLocalAssum([na'],bk,nal't) in let new_rest = if nal' = [] then rest else ((nal',bk',nal't)::rest) in rebuild_nal (assum::aux) bk bl' (na::nal) (CAst.make @@ CProdN(new_rest,typ')) | _ -> assert false let rebuild_bl aux bl typ = rebuild_bl aux bl typ let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) = let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in let ((_,_,typel),_,ctx,_) = Command.interp_fixpoint fixl ntns in let constr_expr_typel = with_full_print (List.map (Constrextern.extern_constr false (Global.env ()) (Evd.from_ctx ctx))) typel in let fixpoint_exprl_with_new_bl = List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ -> let new_bl',new_ret_type = rebuild_bl [] bl fix_typ in (((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixpoint_exprl constr_expr_typel in fixpoint_exprl_with_new_bl let do_generate_principle pconstants on_error register_built interactive_proof (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit = List.iter (fun (_,l) -> if not (List.is_empty l) then error "Function does not support notations for now") fixpoint_exprl; let _is_struct = match fixpoint_exprl with | [((_,(wf_x,Constrexpr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] -> let (((((_,name),pl),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook; false |[((_,(wf_x,Constrexpr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] -> let (((((_,name),_),_,args,types,body)),_) as fixpoint_expr = match recompute_binder_list [fixpoint_expr] with | [e] -> e | _ -> assert false in let fixpoint_exprl = [fixpoint_expr] in let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let using_lemmas = [] in let body = match body with | Some body -> body | None -> user_err ~hdr:"Function" (str "Body of Function must be given") in let pre_hook pconstants = generate_principle (ref (Evd.from_env (Global.env ()))) pconstants on_error true register_built fixpoint_exprl recdefs true in if register_built then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook; true | _ -> List.iter (function ((_na,(_,ord),_args,_body,_type),_not) -> match ord with | Constrexpr.CMeasureRec _ | Constrexpr.CWfRec _ -> error ("Cannot use mutual definition with well-founded recursion or measure") | _ -> () ) fixpoint_exprl; let fixpoint_exprl = recompute_binder_list fixpoint_exprl in let fix_names = List.map (function ((((_,name),_),_,_,_,_),_) -> name) fixpoint_exprl in (* ok all the expressions are structural *) let recdefs,rec_impls = build_newrecursive fixpoint_exprl in let is_rec = List.exists (is_rec fix_names) recdefs in let evd,pconstants = if register_built then register_struct is_rec fixpoint_exprl else (Evd.from_env (Global.env ()),pconstants) in let evd = ref evd in generate_principle (ref !evd) pconstants on_error false register_built fixpoint_exprl recdefs interactive_proof (Functional_principles_proofs.prove_princ_for_struct evd interactive_proof); if register_built then begin derive_inversion fix_names; end; true; in () let rec add_args id new_args = CAst.map (function | CRef (r,_) as b -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl((None,r,None),new_args) | _ -> b end | CFix _ | CCoFix _ -> anomaly ~label:"add_args " (Pp.str "todo.") | CProdN(nal,b1) -> CProdN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLambdaN(nal,b1) -> CLambdaN(List.map (fun (nal,k,b2) -> (nal,k,add_args id new_args b2)) nal, add_args id new_args b1) | CLetIn(na,b1,t,b2) -> CLetIn(na,add_args id new_args b1,Option.map (add_args id new_args) t,add_args id new_args b2) | CAppExpl((pf,r,us),exprl) -> begin match r with | Libnames.Ident(loc,fname) when Id.equal fname id -> CAppExpl((pf,r,us),new_args@(List.map (add_args id new_args) exprl)) | _ -> CAppExpl((pf,r,us),List.map (add_args id new_args) exprl) end | CApp((pf,b),bl) -> CApp((pf,add_args id new_args b), List.map (fun (e,o) -> add_args id new_args e,o) bl) | CCases(sty,b_option,cel,cal) -> CCases(sty,Option.map (add_args id new_args) b_option, List.map (fun (b,na,b_option) -> add_args id new_args b, na, b_option) cel, List.map (fun (loc,(cpl,e)) -> Loc.tag ?loc @@ (cpl,add_args id new_args e)) cal ) | CLetTuple(nal,(na,b_option),b1,b2) -> CLetTuple(nal,(na,Option.map (add_args id new_args) b_option), add_args id new_args b1, add_args id new_args b2 ) | CIf(b1,(na,b_option),b2,b3) -> CIf(add_args id new_args b1, (na,Option.map (add_args id new_args) b_option), add_args id new_args b2, add_args id new_args b3 ) | CHole _ | CPatVar _ | CEvar _ | CPrim _ | CSort _ as b -> b | CCast(b1,b2) -> CCast(add_args id new_args b1, Miscops.map_cast_type (add_args id new_args) b2) | CRecord pars -> CRecord (List.map (fun (e,o) -> e, add_args id new_args o) pars) | CNotation _ -> anomaly ~label:"add_args " (Pp.str "CNotation.") | CGeneralization _ -> anomaly ~label:"add_args " (Pp.str "CGeneralization.") | CDelimiters _ -> anomaly ~label:"add_args " (Pp.str "CDelimiters.") ) exception Stop of Constrexpr.constr_expr (* [chop_n_arrow n t] chops the [n] first arrows in [t] Acts on Constrexpr.constr_expr *) let rec chop_n_arrow n t = if n <= 0 then t (* If we have already removed all the arrows then return the type *) else (* If not we check the form of [t] *) match t.CAst.v with | Constrexpr.CProdN(nal_ta',t') -> (* If we have a forall, to result are possible : either we need to discard more than the number of arrows contained in this product declaration then we just recall [chop_n_arrow] on the remaining number of arrow to chop and [t'] we discard it and recall [chop_n_arrow], either this product contains more arrows than the number we need to chop and then we return the new type *) begin try let new_n = let rec aux (n:int) = function [] -> n | (nal,k,t'')::nal_ta' -> let nal_l = List.length nal in if n >= nal_l then aux (n - nal_l) nal_ta' else let new_t' = CAst.make @@ Constrexpr.CProdN( ((snd (List.chop n nal)),k,t'')::nal_ta',t') in raise (Stop new_t') in aux n nal_ta' in chop_n_arrow new_n t' with Stop t -> t end | _ -> anomaly (Pp.str "Not enough products.") let rec get_args b t : Constrexpr.local_binder_expr list * Constrexpr.constr_expr * Constrexpr.constr_expr = match b.CAst.v with | Constrexpr.CLambdaN ((nal_ta), b') -> begin let n = (List.fold_left (fun n (nal,_,_) -> n+List.length nal) 0 nal_ta ) in let nal_tas,b'',t'' = get_args b' (chop_n_arrow n t) in (List.map (fun (nal,k,ta) -> (Constrexpr.CLocalAssum (nal,k,ta))) nal_ta)@nal_tas, b'',t'' end | _ -> [],b,t let make_graph (f_ref:global_reference) = let c,c_body = match f_ref with | ConstRef c -> begin try c,Global.lookup_constant c with Not_found -> raise (UserError (None,str "Cannot find " ++ Printer.pr_leconstr (mkConst c)) ) end | _ -> raise (UserError (None, str "Not a function reference") ) in (match Global.body_of_constant_body c_body with | None -> error "Cannot build a graph over an axiom!" | Some body -> let env = Global.env () in let sigma = Evd.from_env env in let extern_body,extern_type = with_full_print (fun () -> (Constrextern.extern_constr false env sigma body, Constrextern.extern_type false env sigma ((*FIXME*) Typeops.type_of_constant_type env c_body.const_type) ) ) () in let (nal_tas,b,t) = get_args extern_body extern_type in let expr_list = match b.CAst.v with | Constrexpr.CFix(l_id,fixexprl) -> let l = List.map (fun (id,(n,recexp),bl,t,b) -> let loc, rec_id = Option.get n in let new_args = List.flatten (List.map (function | Constrexpr.CLocalDef (na,_,_)-> [] | Constrexpr.CLocalAssum (nal,_,_) -> List.map (fun (loc,n) -> CAst.make ?loc @@ CRef(Libnames.Ident(loc, Nameops.Name.get_id n),None)) nal | Constrexpr.CLocalPattern _ -> assert false ) nal_tas ) in let b' = add_args (snd id) new_args b in ((((id,None), ( Some (Loc.tag rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list)) ) fixexprl in l | _ -> let id = Label.to_id (Constant.label c) in [(((Loc.tag id),None),(None,Constrexpr.CStructRec),nal_tas,t,Some b),[]] in let mp,dp,_ = Constant.repr3 c in do_generate_principle [c,Univ.Instance.empty] error_error false false expr_list; (* We register the infos *) List.iter (fun ((((_,id),_),_,_,_,_),_) -> add_Function false (Constant.make3 mp dp (Label.of_id id))) expr_list) let do_generate_principle = do_generate_principle [] warning_error true