(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* r0;; let flin_add f x c = let cx = flin_coef f x in Constrhash.replace f.fhom x (rplus cx c); f ;; let flin_add_cste f c = {fhom=f.fhom; fcste=rplus f.fcste c} ;; let flin_one () = flin_add_cste (flin_zero()) r1;; let flin_plus f1 f2 = let f3 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom; Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom; flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste; ;; let flin_minus f1 f2 = let f3 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom; Constrhash.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom; flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste); ;; let flin_emult a f = let f2 = flin_zero() in Constrhash.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom; flin_add_cste f2 (rmult a f.fcste); ;; (*****************************************************************************) type ineq = Rlt | Rle | Rgt | Rge let string_of_R_constant kn = match Names.repr_con kn with | MPfile dir, sec_dir, id when sec_dir = DirPath.empty && DirPath.to_string dir = "Coq.Reals.Rdefinitions" -> Label.to_string id | _ -> "constant_not_of_R" let rec string_of_R_constr c = match kind_of_term c with Cast (c,_,_) -> string_of_R_constr c |Const (c,_) -> string_of_R_constant c | _ -> "not_of_constant" exception NoRational let rec rational_of_constr c = match kind_of_term c with | Cast (c,_,_) -> (rational_of_constr c) | App (c,args) -> (match (string_of_R_constr c) with | "Ropp" -> rop (rational_of_constr args.(0)) | "Rinv" -> rinv (rational_of_constr args.(0)) | "Rmult" -> rmult (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rdiv" -> rdiv (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rplus" -> rplus (rational_of_constr args.(0)) (rational_of_constr args.(1)) | "Rminus" -> rminus (rational_of_constr args.(0)) (rational_of_constr args.(1)) | _ -> raise NoRational) | Const (kn,_) -> (match (string_of_R_constant kn) with "R1" -> r1 |"R0" -> r0 | _ -> raise NoRational) | _ -> raise NoRational ;; exception NoLinear let rec flin_of_constr c = try( match kind_of_term c with | Cast (c,_,_) -> (flin_of_constr c) | App (c,args) -> (match (string_of_R_constr c) with "Ropp" -> flin_emult (rop r1) (flin_of_constr args.(0)) | "Rplus"-> flin_plus (flin_of_constr args.(0)) (flin_of_constr args.(1)) | "Rminus"-> flin_minus (flin_of_constr args.(0)) (flin_of_constr args.(1)) | "Rmult"-> (try let a = rational_of_constr args.(0) in try let b = rational_of_constr args.(1) in flin_add_cste (flin_zero()) (rmult a b) with NoRational -> flin_add (flin_zero()) args.(1) a with NoRational -> flin_add (flin_zero()) args.(0) (rational_of_constr args.(1))) | "Rinv"-> let a = rational_of_constr args.(0) in flin_add_cste (flin_zero()) (rinv a) | "Rdiv"-> (let b = rational_of_constr args.(1) in try let a = rational_of_constr args.(0) in flin_add_cste (flin_zero()) (rdiv a b) with NoRational -> flin_add (flin_zero()) args.(0) (rinv b)) |_-> raise NoLinear) | Const (c,_) -> (match (string_of_R_constant c) with "R1" -> flin_one () |"R0" -> flin_zero () |_-> raise NoLinear) |_-> raise NoLinear) with NoRational | NoLinear -> flin_add (flin_zero()) c r1 ;; let flin_to_alist f = let res=ref [] in Constrhash.iter (fun x c -> res:=(c,x)::(!res)) f; !res ;; (* Représentation des hypothèses qui sont des inéquations ou des équations. *) type hineq={hname:constr; (* le nom de l'hypothèse *) htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *) hleft:constr; hright:constr; hflin:flin; hstrict:bool} ;; (* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0 *) exception NoIneq let ineq1_of_constr (h,t) = let h = EConstr.Unsafe.to_constr h in let t = EConstr.Unsafe.to_constr t in match (kind_of_term t) with | App (f,args) -> (match kind_of_term f with | Const (c,_) when Array.length args = 2 -> let t1= args.(0) in let t2= args.(1) in (match (string_of_R_constant c) with |"Rlt" -> [{hname=h; htype="Rlt"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=true}] |"Rgt" -> [{hname=h; htype="Rgt"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=true}] |"Rle" -> [{hname=h; htype="Rle"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=false}] |"Rge" -> [{hname=h; htype="Rge"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=false}] |_-> raise NoIneq) | Ind ((kn,i),_) -> if not (eq_gr (IndRef(kn,i)) Coqlib.glob_eq) then raise NoIneq; let t0= args.(0) in let t1= args.(1) in let t2= args.(2) in (match (kind_of_term t0) with | Const (c,_) -> (match (string_of_R_constant c) with | "R"-> [{hname=h; htype="eqTLR"; hleft=t1; hright=t2; hflin= flin_minus (flin_of_constr t1) (flin_of_constr t2); hstrict=false}; {hname=h; htype="eqTRL"; hleft=t2; hright=t1; hflin= flin_minus (flin_of_constr t2) (flin_of_constr t1); hstrict=false}] |_-> raise NoIneq) |_-> raise NoIneq) |_-> raise NoIneq) |_-> raise NoIneq ;; (* Applique la méthode de Fourier à une liste d'hypothèses (type hineq) *) let fourier_lineq lineq1 = let nvar=ref (-1) in let hvar=Constrhash.create 50 in (* la table des variables des inéquations *) List.iter (fun f -> Constrhash.iter (fun x _ -> if not (Constrhash.mem hvar x) then begin nvar:=(!nvar)+1; Constrhash.add hvar x (!nvar) end) f.hflin.fhom) lineq1; let sys= List.map (fun h-> let v=Array.make ((!nvar)+1) r0 in Constrhash.iter (fun x c -> v.(Constrhash.find hvar x)<-c) h.hflin.fhom; ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict)) lineq1 in unsolvable sys ;; (*********************************************************************) (* Defined constants *) let get = Lazy.force let cget = get let eget c = EConstr.of_constr (Lazy.force c) let constant path s = Universes.constr_of_global @@ Coqlib.coq_reference "Fourier" path s (* Standard library *) open Coqlib let coq_sym_eqT = lazy (build_coq_eq_sym ()) let coq_False = lazy (Universes.constr_of_global @@ build_coq_False ()) let coq_not = lazy (Universes.constr_of_global @@ build_coq_not ()) let coq_eq = lazy (Universes.constr_of_global @@ build_coq_eq ()) (* Rdefinitions *) let constant_real = constant ["Reals";"Rdefinitions"] let coq_Rlt = lazy (constant_real "Rlt") let coq_Rgt = lazy (constant_real "Rgt") let coq_Rle = lazy (constant_real "Rle") let coq_Rge = lazy (constant_real "Rge") let coq_R = lazy (constant_real "R") let coq_Rminus = lazy (constant_real "Rminus") let coq_Rmult = lazy (constant_real "Rmult") let coq_Rplus = lazy (constant_real "Rplus") let coq_Ropp = lazy (constant_real "Ropp") let coq_Rinv = lazy (constant_real "Rinv") let coq_R0 = lazy (constant_real "R0") let coq_R1 = lazy (constant_real "R1") (* RIneq *) let coq_Rinv_1 = lazy (constant ["Reals";"RIneq"] "Rinv_1") (* Fourier_util *) let constant_fourier = constant ["fourier";"Fourier_util"] let coq_Rlt_zero_1 = lazy (constant_fourier "Rlt_zero_1") let coq_Rlt_zero_pos_plus1 = lazy (constant_fourier "Rlt_zero_pos_plus1") let coq_Rle_zero_pos_plus1 = lazy (constant_fourier "Rle_zero_pos_plus1") let coq_Rlt_mult_inv_pos = lazy (constant_fourier "Rlt_mult_inv_pos") let coq_Rle_zero_zero = lazy (constant_fourier "Rle_zero_zero") let coq_Rle_zero_1 = lazy (constant_fourier "Rle_zero_1") let coq_Rle_mult_inv_pos = lazy (constant_fourier "Rle_mult_inv_pos") let coq_Rnot_lt0 = lazy (constant_fourier "Rnot_lt0") let coq_Rle_not_lt = lazy (constant_fourier "Rle_not_lt") let coq_Rfourier_gt_to_lt = lazy (constant_fourier "Rfourier_gt_to_lt") let coq_Rfourier_ge_to_le = lazy (constant_fourier "Rfourier_ge_to_le") let coq_Rfourier_eqLR_to_le = lazy (constant_fourier "Rfourier_eqLR_to_le") let coq_Rfourier_eqRL_to_le = lazy (constant_fourier "Rfourier_eqRL_to_le") let coq_Rfourier_not_ge_lt = lazy (constant_fourier "Rfourier_not_ge_lt") let coq_Rfourier_not_gt_le = lazy (constant_fourier "Rfourier_not_gt_le") let coq_Rfourier_not_le_gt = lazy (constant_fourier "Rfourier_not_le_gt") let coq_Rfourier_not_lt_ge = lazy (constant_fourier "Rfourier_not_lt_ge") let coq_Rfourier_lt = lazy (constant_fourier "Rfourier_lt") let coq_Rfourier_le = lazy (constant_fourier "Rfourier_le") let coq_Rfourier_lt_lt = lazy (constant_fourier "Rfourier_lt_lt") let coq_Rfourier_lt_le = lazy (constant_fourier "Rfourier_lt_le") let coq_Rfourier_le_lt = lazy (constant_fourier "Rfourier_le_lt") let coq_Rfourier_le_le = lazy (constant_fourier "Rfourier_le_le") let coq_Rnot_lt_lt = lazy (constant_fourier "Rnot_lt_lt") let coq_Rnot_le_le = lazy (constant_fourier "Rnot_le_le") let coq_Rlt_not_le_frac_opp = lazy (constant_fourier "Rlt_not_le_frac_opp") (****************************************************************************** Construction de la preuve en cas de succès de la méthode de Fourier, i.e. on obtient une contradiction. *) let is_int x = (x.den)=1 ;; (* fraction = couple (num,den) *) let rational_to_fraction x= (x.num,x.den) ;; (* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1))) *) let int_to_real n = let nn=abs n in if nn=0 then get coq_R0 else (let s=ref (get coq_R1) in for _i = 1 to (nn-1) do s:=mkApp (get coq_Rplus,[|get coq_R1;!s|]) done; if n<0 then mkApp (get coq_Ropp, [|!s|]) else !s) ;; (* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1))) *) let rational_to_real x = let (n,d)=rational_to_fraction x in mkApp (get coq_Rmult, [|int_to_real n;mkApp(get coq_Rinv,[|int_to_real d|])|]) ;; (* preuve que 0 False *) let tac_zero_inf_false gl (n,d) = let get = eget in if n=0 then (apply (get coq_Rnot_lt0)) else (Tacticals.New.tclTHEN (apply (get coq_Rle_not_lt)) (tac_zero_infeq_pos gl (-n,d))) ;; (* preuve que 0<=(-n)*(1/d) => False *) let tac_zero_infeq_false gl (n,d) = let get = eget in (Tacticals.New.tclTHEN (apply (get coq_Rlt_not_le_frac_opp)) (tac_zero_inf_pos gl (-n,d))) ;; let exact = exact_check;; let tac_use h = let get = eget in let tac = exact (EConstr.of_constr h.hname) in match h.htype with "Rlt" -> tac |"Rle" -> tac |"Rgt" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_gt_to_lt)) tac) |"Rge" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_ge_to_le)) tac) |"eqTLR" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqLR_to_le)) tac) |"eqTRL" -> (Tacticals.New.tclTHEN (apply (get coq_Rfourier_eqRL_to_le)) tac) |_->assert false ;; (* let is_ineq (h,t) = match (kind_of_term t) with App (f,args) -> (match (string_of_R_constr f) with "Rlt" -> true | "Rgt" -> true | "Rle" -> true | "Rge" -> true (* Wrong:not in Rdefinitions: *) | "eqT" -> (match (string_of_R_constr args.(0)) with "R" -> true | _ -> false) | _ ->false) |_->false ;; *) let list_of_sign s = let open Context.Named.Declaration in List.map (function LocalAssum (name, typ) -> name, typ | LocalDef (name, _, typ) -> name, typ) s;; let mkAppL a = let l = Array.to_list a in mkApp(List.hd l, Array.of_list (List.tl l)) ;; exception GoalDone (* Résolution d'inéquations linéaires dans R *) let rec fourier () = Proofview.Goal.nf_enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in Coqlib.check_required_library ["Coq";"fourier";"Fourier"]; let goal = Termops.strip_outer_cast sigma concl in let goal = EConstr.Unsafe.to_constr goal in let fhyp=Id.of_string "new_hyp_for_fourier" in (* si le but est une inéquation, on introduit son contraire, et le but à prouver devient False *) try match (kind_of_term goal) with App (f,args) -> let get = eget in (match (string_of_R_constr f) with "Rlt" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_ge_lt)) (intro_using fhyp)) (fourier ())) |"Rle" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_gt_le)) (intro_using fhyp)) (fourier ())) |"Rgt" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_le_gt)) (intro_using fhyp)) (fourier ())) |"Rge" -> (Tacticals.New.tclTHEN (Tacticals.New.tclTHEN (apply (get coq_Rfourier_not_lt_ge)) (intro_using fhyp)) (fourier ())) |_-> raise GoalDone) |_-> raise GoalDone with GoalDone -> (* les hypothèses *) let hyps = List.map (fun (h,t)-> (EConstr.mkVar h,t)) (list_of_sign (Proofview.Goal.hyps gl)) in let lineq =ref [] in List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq)) with NoIneq -> ()) hyps; (* lineq = les inéquations découlant des hypothèses *) if !lineq=[] then CErrors.user_err Pp.(str "No inequalities"); let res=fourier_lineq (!lineq) in let tac=ref (Proofview.tclUNIT ()) in if res=[] then CErrors.user_err Pp.(str "fourier failed") (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *) else (match res with [(cres,sres,lc)]-> (* lc=coefficients multiplicateurs des inéquations qui donnent 0 if c<>r0 then (lutil:=(h,c)::(!lutil)(*; print_rational(c);print_string " "*))) (List.combine (!lineq) lc); (* on construit la combinaison linéaire des inéquation *) (match (!lutil) with (h1,c1)::lutil -> let s=ref (h1.hstrict) in let t1=ref (mkAppL [|get coq_Rmult; rational_to_real c1; h1.hleft|]) in let t2=ref (mkAppL [|get coq_Rmult; rational_to_real c1; h1.hright|]) in List.iter (fun (h,c) -> s:=(!s)||(h.hstrict); t1:=(mkAppL [|get coq_Rplus; !t1; mkAppL [|get coq_Rmult; rational_to_real c; h.hleft|] |]); t2:=(mkAppL [|get coq_Rplus; !t2; mkAppL [|get coq_Rmult; rational_to_real c; h.hright|] |])) lutil; let ineq=mkAppL [|if (!s) then get coq_Rlt else get coq_Rle; !t1; !t2 |] in let tc=rational_to_real cres in (* puis sa preuve *) let get = eget in let tac1=ref (if h1.hstrict then (Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt)) [tac_use h1; tac_zero_inf_pos gl (rational_to_fraction c1)]) else (Tacticals.New.tclTHENS (apply (get coq_Rfourier_le)) [tac_use h1; tac_zero_inf_pos gl (rational_to_fraction c1)])) in s:=h1.hstrict; List.iter (fun (h,c)-> (if (!s) then (if h.hstrict then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_lt)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]) else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_lt_le)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)])) else (if h.hstrict then tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_lt)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]) else tac1:=(Tacticals.New.tclTHENS (apply (get coq_Rfourier_le_le)) [!tac1;tac_use h; tac_zero_inf_pos gl (rational_to_fraction c)]))); s:=(!s)||(h.hstrict)) lutil; let tac2= if sres then tac_zero_inf_false gl (rational_to_fraction cres) else tac_zero_infeq_false gl (rational_to_fraction cres) in tac:=(Tacticals.New.tclTHENS (cut (EConstr.of_constr ineq)) [Tacticals.New.tclTHEN (change_concl (EConstr.of_constr (mkAppL [| cget coq_not; ineq|] ))) (Tacticals.New.tclTHEN (apply (if sres then get coq_Rnot_lt_lt else get coq_Rnot_le_le)) (Tacticals.New.tclTHENS (Equality.replace (EConstr.of_constr (mkAppL [|cget coq_Rminus;!t2;!t1|] )) (EConstr.of_constr tc)) [tac2; (Tacticals.New.tclTHENS (Equality.replace (EConstr.of_constr (mkApp (cget coq_Rinv, [|cget coq_R1|]))) (get coq_R1)) (* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *) [Tacticals.New.tclORELSE (* TODO : Ring.polynom []*) (Proofview.tclUNIT ()) (Proofview.tclUNIT ()); Tacticals.New.pf_constr_of_global (cget coq_sym_eqT) >>= fun symeq -> (Tacticals.New.tclTHEN (apply symeq) (apply (get coq_Rinv_1)))] ) ])); !tac1]); tac:=(Tacticals.New.tclTHENS (cut (get coq_False)) [Tacticals.New.tclTHEN intro (contradiction None); !tac]) |_-> assert false) |_-> assert false ); (* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *) !tac (* ((tclABSTRACT None !tac) gl) *) end ;; (* let fourier_tac x gl = fourier gl ;; let v_fourier = add_tactic "Fourier" fourier_tac *)