(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* tactic) -> Sequent.t -> tactic type lseqtac= global_reference -> seqtac type 'a with_backtracking = tactic -> 'a let wrap n b continue seq gls= check_for_interrupt (); let nc=pf_hyps gls in let env=pf_env gls in let rec aux i nc ctx= if i<=0 then seq else match nc with []->anomaly "Not the expected number of hyps" | ((id,_,typ) as nd)::q-> if occur_var env id (pf_concl gls) || List.exists (occur_var_in_decl env id) ctx then (aux (i-1) q (nd::ctx)) else add_formula Hyp (VarRef id) typ (aux (i-1) q (nd::ctx)) gls in let seq1=aux n nc [] in let seq2=if b then add_formula Concl dummy_id (pf_concl gls) seq1 gls else seq1 in continue seq2 gls let id_of_global=function VarRef id->id | _->assert false let clear_global=function VarRef id->clear [id] | _->tclIDTAC (* connection rules *) let axiom_tac t seq= try exact_no_check (constr_of_global (find_left t seq)) with Not_found->tclFAIL 0 (Pp.str "No axiom link") let ll_atom_tac a backtrack id continue seq= tclIFTHENELSE (try tclTHENLIST [generalize [mkApp(constr_of_global id, [|constr_of_global (find_left a seq)|])]; clear_global id; intro] with Not_found->tclFAIL 0 (Pp.str "No link")) (wrap 1 false continue seq) backtrack (* right connectives rules *) let and_tac backtrack continue seq= tclIFTHENELSE simplest_split (wrap 0 true continue seq) backtrack let or_tac backtrack continue seq= tclORELSE (any_constructor false (Some (tclCOMPLETE (wrap 0 true continue seq)))) backtrack let arrow_tac backtrack continue seq= tclIFTHENELSE intro (wrap 1 true continue seq) (tclORELSE (tclTHEN introf (tclCOMPLETE (wrap 1 true continue seq))) backtrack) (* left connectives rules *) let left_and_tac ind backtrack id continue seq gls= let n=(construct_nhyps ind gls).(0) in tclIFTHENELSE (tclTHENLIST [simplest_elim (constr_of_global id); clear_global id; tclDO n intro]) (wrap n false continue seq) backtrack gls let left_or_tac ind backtrack id continue seq gls= let v=construct_nhyps ind gls in let f n= tclTHENLIST [clear_global id; tclDO n intro; wrap n false continue seq] in tclIFTHENSVELSE (simplest_elim (constr_of_global id)) (Array.map f v) backtrack gls let left_false_tac id= simplest_elim (constr_of_global id) (* left arrow connective rules *) (* We use this function for false, and, or, exists *) let ll_ind_tac ind largs backtrack id continue seq gl= let rcs=ind_hyps 0 ind largs gl in let vargs=Array.of_list largs in (* construire le terme H->B, le generaliser etc *) let myterm i= let rc=rcs.(i) in let p=List.length rc in let cstr=mkApp ((mkConstruct (ind,(i+1))),vargs) in let vars=Array.init p (fun j->mkRel (p-j)) in let capply=mkApp ((lift p cstr),vars) in let head=mkApp ((lift p (constr_of_global id)),[|capply|]) in it_mkLambda_or_LetIn head rc in let lp=Array.length rcs in let newhyps=list_tabulate myterm lp in tclIFTHENELSE (tclTHENLIST [generalize newhyps; clear_global id; tclDO lp intro]) (wrap lp false continue seq) backtrack gl let ll_arrow_tac a b c backtrack id continue seq= let cc=mkProd(Anonymous,a,(lift 1 b)) in let d=mkLambda (Anonymous,b, mkApp ((constr_of_global id), [|mkLambda (Anonymous,(lift 1 a),(mkRel 2))|])) in tclORELSE (tclTHENS (cut c) [tclTHENLIST [introf; clear_global id; wrap 1 false continue seq]; tclTHENS (cut cc) [exact_no_check (constr_of_global id); tclTHENLIST [generalize [d]; clear_global id; introf; introf; tclCOMPLETE (wrap 2 true continue seq)]]]) backtrack (* quantifier rules (easy side) *) let forall_tac backtrack continue seq= tclORELSE (tclIFTHENELSE intro (wrap 0 true continue seq) (tclORELSE (tclTHEN introf (tclCOMPLETE (wrap 0 true continue seq))) backtrack)) (if !qflag then tclFAIL 0 (Pp.str "reversible in 1st order mode") else backtrack) let left_exists_tac ind backtrack id continue seq gls= let n=(construct_nhyps ind gls).(0) in tclIFTHENELSE (simplest_elim (constr_of_global id)) (tclTHENLIST [clear_global id; tclDO n intro; (wrap (n-1) false continue seq)]) backtrack gls let ll_forall_tac prod backtrack id continue seq= tclORELSE (tclTHENS (cut prod) [tclTHENLIST [intro; (fun gls-> let id0=pf_nth_hyp_id gls 1 in let term=mkApp((constr_of_global id),[|mkVar(id0)|]) in tclTHEN (generalize [term]) (clear [id0]) gls); clear_global id; intro; tclCOMPLETE (wrap 1 false continue (deepen seq))]; tclCOMPLETE (wrap 0 true continue (deepen seq))]) backtrack (* rules for instantiation with unification moved to instances.ml *) (* special for compatibility with old Intuition *) let constant str = Coqlib.gen_constant "User" ["Init";"Logic"] str let defined_connectives=lazy [all_occurrences,EvalConstRef (destConst (constant "not")); all_occurrences,EvalConstRef (destConst (constant "iff"))] let normalize_evaluables= onAllHypsAndConcl (function None->unfold_in_concl (Lazy.force defined_connectives) | Some id -> unfold_in_hyp (Lazy.force defined_connectives) (id,InHypTypeOnly))