(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* metavariable exception Is_atom of constr let meta_succ m = m+1 let rec nb_prod_after n c= match kind_of_term c with | Prod (_,_,b) ->if n>0 then nb_prod_after (n-1) b else 1+(nb_prod_after 0 b) | _ -> 0 let construct_nhyps ind gls = let nparams = (fst (Global.lookup_inductive ind)).mind_nparams in let constr_types = Inductiveops.arities_of_constructors (pf_env gls) ind in let hyp = nb_prod_after nparams in Array.map hyp constr_types (* indhyps builds the array of arrays of constructor hyps for (ind largs)*) let ind_hyps nevar ind largs gls= let types= Inductiveops.arities_of_constructors (pf_env gls) ind in let lp=Array.length types in let myhyps i= let t1=Term.prod_applist types.(i) largs in let t2=snd (decompose_prod_n_assum nevar t1) in fst (decompose_prod_assum t2) in Array.init lp myhyps let special_nf gl= let infos=Closure.create_clos_infos !red_flags (pf_env gl) in (fun t -> Closure.norm_val infos (Closure.inject t)) let special_whd gl= let infos=Closure.create_clos_infos !red_flags (pf_env gl) in (fun t -> Closure.whd_val infos (Closure.inject t)) type kind_of_formula= Arrow of constr*constr | False of inductive*constr list | And of inductive*constr list*bool | Or of inductive*constr list*bool | Exists of inductive*constr list | Forall of constr*constr | Atom of constr let kind_of_formula gl term = let normalize=special_nf gl in let cciterm=special_whd gl term in match match_with_imp_term cciterm with Some (a,b)-> Arrow(a,(pop b)) |_-> match match_with_forall_term cciterm with Some (_,a,b)-> Forall(a,b) |_-> match match_with_nodep_ind cciterm with Some (i,l,n)-> let ind=destInd i in let (mib,mip) = Global.lookup_inductive ind in let nconstr=Array.length mip.mind_consnames in if nconstr=0 then False(ind,l) else let has_realargs=(n>0) in let is_trivial= let is_constant c = nb_prod c = mib.mind_nparams in Array.exists is_constant mip.mind_nf_lc in if Inductiveops.mis_is_recursive (ind,mib,mip) || (has_realargs && not is_trivial) then Atom cciterm else if nconstr=1 then And(ind,l,is_trivial) else Or(ind,l,is_trivial) | _ -> match match_with_sigma_type cciterm with Some (i,l)-> Exists((destInd i),l) |_-> Atom (normalize cciterm) type atoms = {positive:constr list;negative:constr list} type side = Hyp | Concl | Hint let no_atoms = (false,{positive=[];negative=[]}) let dummy_id=VarRef (Id.of_string "_") (* "_" cannot be parsed *) let build_atoms gl metagen side cciterm = let trivial =ref false and positive=ref [] and negative=ref [] in let normalize=special_nf gl in let rec build_rec env polarity cciterm= match kind_of_formula gl cciterm with False(_,_)->if not polarity then trivial:=true | Arrow (a,b)-> build_rec env (not polarity) a; build_rec env polarity b | And(i,l,b) | Or(i,l,b)-> if b then begin let unsigned=normalize (substnl env 0 cciterm) in if polarity then positive:= unsigned :: !positive else negative:= unsigned :: !negative end; let v = ind_hyps 0 i l gl in let g i _ (_,_,t) = build_rec env polarity (lift i t) in let f l = List.fold_left_i g (1-(List.length l)) () l in if polarity && (* we have a constant constructor *) Array.exists (function []->true|_->false) v then trivial:=true; Array.iter f v | Exists(i,l)-> let var=mkMeta (metagen true) in let v =(ind_hyps 1 i l gl).(0) in let g i _ (_,_,t) = build_rec (var::env) polarity (lift i t) in List.fold_left_i g (2-(List.length l)) () v | Forall(_,b)-> let var=mkMeta (metagen true) in build_rec (var::env) polarity b | Atom t-> let unsigned=substnl env 0 t in if not (isMeta unsigned) then (* discarding wildcard atoms *) if polarity then positive:= unsigned :: !positive else negative:= unsigned :: !negative in begin match side with Concl -> build_rec [] true cciterm | Hyp -> build_rec [] false cciterm | Hint -> let rels,head=decompose_prod cciterm in let env=List.rev_map (fun _->mkMeta (metagen true)) rels in build_rec env false head;trivial:=false (* special for hints *) end; (!trivial, {positive= !positive; negative= !negative}) type right_pattern = Rarrow | Rand | Ror | Rfalse | Rforall | Rexists of metavariable*constr*bool type left_arrow_pattern= LLatom | LLfalse of inductive*constr list | LLand of inductive*constr list | LLor of inductive*constr list | LLforall of constr | LLexists of inductive*constr list | LLarrow of constr*constr*constr type left_pattern= Lfalse | Land of inductive | Lor of inductive | Lforall of metavariable*constr*bool | Lexists of inductive | LA of constr*left_arrow_pattern type t={id:global_reference; constr:constr; pat:(left_pattern,right_pattern) sum; atoms:atoms} let build_formula side nam typ gl metagen= let normalize = special_nf gl in try let m=meta_succ(metagen false) in let trivial,atoms= if !qflag then build_atoms gl metagen side typ else no_atoms in let pattern= match side with Concl -> let pat= match kind_of_formula gl typ with False(_,_) -> Rfalse | Atom a -> raise (Is_atom a) | And(_,_,_) -> Rand | Or(_,_,_) -> Ror | Exists (i,l) -> let (_,_,d)=List.last (ind_hyps 0 i l gl).(0) in Rexists(m,d,trivial) | Forall (_,a) -> Rforall | Arrow (a,b) -> Rarrow in Right pat | _ -> let pat= match kind_of_formula gl typ with False(i,_) -> Lfalse | Atom a -> raise (Is_atom a) | And(i,_,b) -> if b then let nftyp=normalize typ in raise (Is_atom nftyp) else Land i | Or(i,_,b) -> if b then let nftyp=normalize typ in raise (Is_atom nftyp) else Lor i | Exists (ind,_) -> Lexists ind | Forall (d,_) -> Lforall(m,d,trivial) | Arrow (a,b) -> let nfa=normalize a in LA (nfa, match kind_of_formula gl a with False(i,l)-> LLfalse(i,l) | Atom t-> LLatom | And(i,l,_)-> LLand(i,l) | Or(i,l,_)-> LLor(i,l) | Arrow(a,c)-> LLarrow(a,c,b) | Exists(i,l)->LLexists(i,l) | Forall(_,_)->LLforall a) in Left pat in Left {id=nam; constr=normalize typ; pat=pattern; atoms=atoms} with Is_atom a-> Right a (* already in nf *)