(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* metavariable exception Is_atom of constr let meta_succ m = m+1 let rec nb_prod_after n c= match Constr.kind c with | Prod (_,_,b) ->if n>0 then nb_prod_after (n-1) b else 1+(nb_prod_after 0 b) | _ -> 0 let construct_nhyps env ind = let nparams = (fst (Global.lookup_inductive (fst ind))).mind_nparams in let constr_types = Inductiveops.arities_of_constructors env ind in let hyp = nb_prod_after nparams in Array.map hyp constr_types (* indhyps builds the array of arrays of constructor hyps for (ind largs)*) let ind_hyps env sigma nevar ind largs = let types= Inductiveops.arities_of_constructors env ind in let myhyps t = let t = EConstr.of_constr t in let nparam_decls = Context.Rel.length (fst (Global.lookup_inductive (fst ind))).mind_params_ctxt in let t1=Termops.prod_applist_assum sigma nparam_decls t largs in let t2=snd (decompose_prod_n_assum sigma nevar t1) in fst (decompose_prod_assum sigma t2) in Array.map myhyps types let special_nf env sigma t = Reductionops.clos_norm_flags !red_flags env sigma t let special_whd env sigma t = Reductionops.clos_whd_flags !red_flags env sigma t type kind_of_formula= Arrow of constr*constr | False of pinductive*constr list | And of pinductive*constr list*bool | Or of pinductive*constr list*bool | Exists of pinductive*constr list | Forall of constr*constr | Atom of constr let pop t = Vars.lift (-1) t let kind_of_formula env sigma term = let normalize = special_nf env sigma in let cciterm = special_whd env sigma term in match match_with_imp_term sigma cciterm with Some (a,b)-> Arrow (a, pop b) |_-> match match_with_forall_term sigma cciterm with Some (_,a,b)-> Forall (a, b) |_-> match match_with_nodep_ind sigma cciterm with Some (i,l,n)-> let ind,u=EConstr.destInd sigma i in let u = EConstr.EInstance.kind sigma u in let (mib,mip) = Global.lookup_inductive ind in let nconstr=Array.length mip.mind_consnames in if Int.equal nconstr 0 then False((ind,u),l) else let has_realargs=(n>0) in let is_trivial= let is_constant c = Int.equal (nb_prod sigma (EConstr.of_constr c)) mib.mind_nparams in Array.exists is_constant mip.mind_nf_lc in if Inductiveops.mis_is_recursive (ind,mib,mip) || (has_realargs && not is_trivial) then Atom cciterm else if Int.equal nconstr 1 then And((ind,u),l,is_trivial) else Or((ind,u),l,is_trivial) | _ -> match match_with_sigma_type sigma cciterm with Some (i,l)-> let (ind, u) = EConstr.destInd sigma i in let u = EConstr.EInstance.kind sigma u in Exists((ind, u), l) |_-> Atom (normalize cciterm) type atoms = {positive:constr list;negative:constr list} type side = Hyp | Concl | Hint let no_atoms = (false,{positive=[];negative=[]}) let dummy_id=VarRef (Id.of_string "_") (* "_" cannot be parsed *) let build_atoms env sigma metagen side cciterm = let trivial =ref false and positive=ref [] and negative=ref [] in let normalize=special_nf env sigma in let rec build_rec subst polarity cciterm= match kind_of_formula env sigma cciterm with False(_,_)->if not polarity then trivial:=true | Arrow (a,b)-> build_rec subst (not polarity) a; build_rec subst polarity b | And(i,l,b) | Or(i,l,b)-> if b then begin let unsigned=normalize (substnl subst 0 cciterm) in if polarity then positive:= unsigned :: !positive else negative:= unsigned :: !negative end; let v = ind_hyps env sigma 0 i l in let g i _ decl = build_rec subst polarity (lift i (RelDecl.get_type decl)) in let f l = List.fold_left_i g (1-(List.length l)) () l in if polarity && (* we have a constant constructor *) Array.exists (function []->true|_->false) v then trivial:=true; Array.iter f v | Exists(i,l)-> let var=mkMeta (metagen true) in let v =(ind_hyps env sigma 1 i l).(0) in let g i _ decl = build_rec (var::subst) polarity (lift i (RelDecl.get_type decl)) in List.fold_left_i g (2-(List.length l)) () v | Forall(_,b)-> let var=mkMeta (metagen true) in build_rec (var::subst) polarity b | Atom t-> let unsigned=substnl subst 0 t in if not (isMeta sigma unsigned) then (* discarding wildcard atoms *) if polarity then positive:= unsigned :: !positive else negative:= unsigned :: !negative in begin match side with Concl -> build_rec [] true cciterm | Hyp -> build_rec [] false cciterm | Hint -> let rels,head=decompose_prod sigma cciterm in let subst=List.rev_map (fun _->mkMeta (metagen true)) rels in build_rec subst false head;trivial:=false (* special for hints *) end; (!trivial, {positive= !positive; negative= !negative}) type right_pattern = Rarrow | Rand | Ror | Rfalse | Rforall | Rexists of metavariable*constr*bool type left_arrow_pattern= LLatom | LLfalse of pinductive*constr list | LLand of pinductive*constr list | LLor of pinductive*constr list | LLforall of constr | LLexists of pinductive*constr list | LLarrow of constr*constr*constr type left_pattern= Lfalse | Land of pinductive | Lor of pinductive | Lforall of metavariable*constr*bool | Lexists of pinductive | LA of constr*left_arrow_pattern type t={id:GlobRef.t; constr:constr; pat:(left_pattern,right_pattern) sum; atoms:atoms} let build_formula env sigma side nam typ metagen= let normalize = special_nf env sigma in try let m=meta_succ(metagen false) in let trivial,atoms= if !qflag then build_atoms env sigma metagen side typ else no_atoms in let pattern= match side with Concl -> let pat= match kind_of_formula env sigma typ with False(_,_) -> Rfalse | Atom a -> raise (Is_atom a) | And(_,_,_) -> Rand | Or(_,_,_) -> Ror | Exists (i,l) -> let d = RelDecl.get_type (List.last (ind_hyps env sigma 0 i l).(0)) in Rexists(m,d,trivial) | Forall (_,a) -> Rforall | Arrow (a,b) -> Rarrow in Right pat | _ -> let pat= match kind_of_formula env sigma typ with False(i,_) -> Lfalse | Atom a -> raise (Is_atom a) | And(i,_,b) -> if b then let nftyp=normalize typ in raise (Is_atom nftyp) else Land i | Or(i,_,b) -> if b then let nftyp=normalize typ in raise (Is_atom nftyp) else Lor i | Exists (ind,_) -> Lexists ind | Forall (d,_) -> Lforall(m,d,trivial) | Arrow (a,b) -> let nfa=normalize a in LA (nfa, match kind_of_formula env sigma a with False(i,l)-> LLfalse(i,l) | Atom t-> LLatom | And(i,l,_)-> LLand(i,l) | Or(i,l,_)-> LLor(i,l) | Arrow(a,c)-> LLarrow(a,c,b) | Exists(i,l)->LLexists(i,l) | Forall(_,_)->LLforall a) in Left pat in Left {id=nam; constr=normalize typ; pat=pattern; atoms=atoms} with Is_atom a-> Right a (* already in nf *)