(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* anonymous_name | Name.Name id when Id.equal id dummy_name -> anonymous_name | Name.Name id -> id let id_of_mlid = function | Dummy -> dummy_name | Id id -> id | Tmp id -> id let tmp_id = function | Id id -> Tmp id | a -> a let is_tmp = function Tmp _ -> true | _ -> false (*S Operations upon ML types (with meta). *) let meta_count = ref 0 let reset_meta_count () = meta_count := 0 let new_meta _ = incr meta_count; Tmeta {id = !meta_count; contents = None} let rec eq_ml_type t1 t2 = match t1, t2 with | Tarr (tl1, tr1), Tarr (tl2, tr2) -> eq_ml_type tl1 tl2 && eq_ml_type tr1 tr2 | Tglob (gr1, t1), Tglob (gr2, t2) -> GlobRef.equal gr1 gr2 && List.equal eq_ml_type t1 t2 | Tvar i1, Tvar i2 -> Int.equal i1 i2 | Tvar' i1, Tvar' i2 -> Int.equal i1 i2 | Tmeta m1, Tmeta m2 -> eq_ml_meta m1 m2 | Tdummy k1, Tdummy k2 -> k1 == k2 | Tunknown, Tunknown -> true | Taxiom, Taxiom -> true | _ -> false and eq_ml_meta m1 m2 = Int.equal m1.id m2.id && Option.equal eq_ml_type m1.contents m2.contents (* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *) let type_subst_list l t = let rec subst t = match t with | Tvar j -> List.nth l (j-1) | Tmeta {contents=None} -> t | Tmeta {contents=Some u} -> subst u | Tarr (a,b) -> Tarr (subst a, subst b) | Tglob (r, l) -> Tglob (r, List.map subst l) | a -> a in subst t (* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *) let type_subst_vect v t = let rec subst t = match t with | Tvar j -> v.(j-1) | Tmeta {contents=None} -> t | Tmeta {contents=Some u} -> subst u | Tarr (a,b) -> Tarr (subst a, subst b) | Tglob (r, l) -> Tglob (r, List.map subst l) | a -> a in subst t (*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *) let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t (*s Occur-check of a free meta in a type *) let rec type_occurs alpha t = match t with | Tmeta {id=beta; contents=None} -> Int.equal alpha beta | Tmeta {contents=Some u} -> type_occurs alpha u | Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2 | Tglob (r,l) -> List.exists (type_occurs alpha) l | _ -> false (*s Most General Unificator *) let rec mgu = function | Tmeta m, Tmeta m' when Int.equal m.id m'.id -> () | Tmeta m, t | t, Tmeta m -> (match m.contents with | Some u -> mgu (u, t) | None when type_occurs m.id t -> raise Impossible | None -> m.contents <- Some t) | Tarr(a, b), Tarr(a', b') -> mgu (a, a'); mgu (b, b') | Tglob (r,l), Tglob (r',l') when GlobRef.equal r r' -> List.iter mgu (List.combine l l') | Tdummy _, Tdummy _ -> () | Tvar i, Tvar j when Int.equal i j -> () | Tvar' i, Tvar' j when Int.equal i j -> () | Tunknown, Tunknown -> () | Taxiom, Taxiom -> () | _ -> raise Impossible let skip_typing () = lang () == Scheme || is_extrcompute () let needs_magic p = if skip_typing () then false else try mgu p; false with Impossible -> true let put_magic_if b a = if b then MLmagic a else a let put_magic p a = if needs_magic p then MLmagic a else a let generalizable a = lang () != Ocaml || match a with | MLapp _ -> false | _ -> true (* TODO, this is just an approximation for the moment *) (*S ML type env. *) module Mlenv = struct let meta_cmp m m' = compare m.id m'.id module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end) (* Main MLenv type. [env] is the real environment, whereas [free] (tries to) record the free meta variables occurring in [env]. *) type t = { env : ml_schema list; mutable free : Metaset.t} (* Empty environment. *) let empty = { env = []; free = Metaset.empty } (* [get] returns a instantiated copy of the n-th most recently added type in the environment. *) let get mle n = assert (List.length mle.env >= n); instantiation (List.nth mle.env (n-1)) (* [find_free] finds the free meta in a type. *) let rec find_free set = function | Tmeta m when Option.is_empty m.contents -> Metaset.add m set | Tmeta {contents = Some t} -> find_free set t | Tarr (a,b) -> find_free (find_free set a) b | Tglob (_,l) -> List.fold_left find_free set l | _ -> set (* The [free] set of an environment can be outdate after some unifications. [clean_free] takes care of that. *) let clean_free mle = let rem = ref Metaset.empty and add = ref Metaset.empty in let clean m = match m.contents with | None -> () | Some u -> rem := Metaset.add m !rem; add := find_free !add u in Metaset.iter clean mle.free; mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add (* From a type to a type schema. If a [Tmeta] is still uninstantiated and does appears in the [mle], then it becomes a [Tvar]. *) let generalization mle t = let c = ref 0 in let map = ref (Int.Map.empty : int Int.Map.t) in let add_new i = incr c; map := Int.Map.add i !c !map; !c in let rec meta2var t = match t with | Tmeta {contents=Some u} -> meta2var u | Tmeta ({id=i} as m) -> (try Tvar (Int.Map.find i !map) with Not_found -> if Metaset.mem m mle.free then t else Tvar (add_new i)) | Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2) | Tglob (r,l) -> Tglob (r, List.map meta2var l) | t -> t in !c, meta2var t (* Adding a type in an environment, after generalizing. *) let push_gen mle t = clean_free mle; { env = generalization mle t :: mle.env; free = mle.free } (* Adding a type with no [Tvar], hence no generalization needed. *) let push_type {env=e;free=f} t = { env = (0,t) :: e; free = find_free f t} (* Adding a type with no [Tvar] nor [Tmeta]. *) let push_std_type {env=e;free=f} t = { env = (0,t) :: e; free = f} end (*S Operations upon ML types (without meta). *) (*s Does a section path occur in a ML type ? *) let rec type_mem_kn kn = function | Tmeta {contents = Some t} -> type_mem_kn kn t | Tglob (r,l) -> occur_kn_in_ref kn r || List.exists (type_mem_kn kn) l | Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b) | _ -> false (*s Greatest variable occurring in [t]. *) let type_maxvar t = let rec parse n = function | Tmeta {contents = Some t} -> parse n t | Tvar i -> max i n | Tarr (a,b) -> parse (parse n a) b | Tglob (_,l) -> List.fold_left parse n l | _ -> n in parse 0 t (*s From [a -> b -> c] to [[a;b],c]. *) let rec type_decomp = function | Tmeta {contents = Some t} -> type_decomp t | Tarr (a,b) -> let l,h = type_decomp b in a::l, h | a -> [],a (*s The converse: From [[a;b],c] to [a -> b -> c]. *) let rec type_recomp (l,t) = match l with | [] -> t | a::l -> Tarr (a, type_recomp (l,t)) (*s Translating [Tvar] to [Tvar'] to avoid clash. *) let rec var2var' = function | Tmeta {contents = Some t} -> var2var' t | Tvar i -> Tvar' i | Tarr (a,b) -> Tarr (var2var' a, var2var' b) | Tglob (r,l) -> Tglob (r, List.map var2var' l) | a -> a type abbrev_map = GlobRef.t -> ml_type option (*s Delta-reduction of type constants everywhere in a ML type [t]. [env] is a function of type [ml_type_env]. *) let type_expand env t = let rec expand = function | Tmeta {contents = Some t} -> expand t | Tglob (r,l) -> (match env r with | Some mlt -> expand (type_subst_list l mlt) | None -> Tglob (r, List.map expand l)) | Tarr (a,b) -> Tarr (expand a, expand b) | a -> a in if Table.type_expand () then expand t else t let type_simpl = type_expand (fun _ -> None) (*s Generating a signature from a ML type. *) let type_to_sign env t = match type_expand env t with | Tdummy d when not (conservative_types ()) -> Kill d | _ -> Keep let type_to_signature env t = let rec f = function | Tmeta {contents = Some t} -> f t | Tarr (Tdummy d, b) when not (conservative_types ()) -> Kill d :: f b | Tarr (_, b) -> Keep :: f b | _ -> [] in f (type_expand env t) let isKill = function Kill _ -> true | _ -> false let isTdummy = function Tdummy _ -> true | _ -> false let isMLdummy = function MLdummy _ -> true | _ -> false let sign_of_id = function | Dummy -> Kill Kprop | _ -> Keep (* Classification of signatures *) type sign_kind = | EmptySig | NonLogicalSig (* at least a [Keep] *) | SafeLogicalSig (* only [Kill Ktype] *) | UnsafeLogicalSig (* No [Keep], not all [Kill Ktype] *) let rec sign_kind = function | [] -> EmptySig | Keep :: _ -> NonLogicalSig | Kill k :: s -> match k, sign_kind s with | _, NonLogicalSig -> NonLogicalSig | Ktype, (SafeLogicalSig | EmptySig) -> SafeLogicalSig | _, _ -> UnsafeLogicalSig (* Removing the final [Keep] in a signature *) let rec sign_no_final_keeps = function | [] -> [] | k :: s -> match k, sign_no_final_keeps s with | Keep, [] -> [] | k, l -> k::l (*s Removing [Tdummy] from the top level of a ML type. *) let type_expunge_from_sign env s t = let rec expunge s t = match s, t with | [], _ -> t | Keep :: s, Tarr(a,b) -> Tarr (a, expunge s b) | Kill _ :: s, Tarr(a,b) -> expunge s b | _, Tmeta {contents = Some t} -> expunge s t | _, Tglob (r,l) -> (match env r with | Some mlt -> expunge s (type_subst_list l mlt) | None -> assert false) | _ -> assert false in let t = expunge (sign_no_final_keeps s) t in if lang () != Haskell && sign_kind s == UnsafeLogicalSig then Tarr (Tdummy Kprop, t) else t let type_expunge env t = type_expunge_from_sign env (type_to_signature env t) t (*S Generic functions over ML ast terms. *) let mlapp f a = if List.is_empty a then f else MLapp (f,a) (** Equality *) let eq_ml_ident i1 i2 = match i1, i2 with | Dummy, Dummy -> true | Id id1, Id id2 -> Id.equal id1 id2 | Tmp id1, Tmp id2 -> Id.equal id1 id2 | _ -> false let rec eq_ml_ast t1 t2 = match t1, t2 with | MLrel i1, MLrel i2 -> Int.equal i1 i2 | MLapp (f1, t1), MLapp (f2, t2) -> eq_ml_ast f1 f2 && List.equal eq_ml_ast t1 t2 | MLlam (na1, t1), MLlam (na2, t2) -> eq_ml_ident na1 na2 && eq_ml_ast t1 t2 | MLletin (na1, c1, t1), MLletin (na2, c2, t2) -> eq_ml_ident na1 na2 && eq_ml_ast c1 c2 && eq_ml_ast t1 t2 | MLglob gr1, MLglob gr2 -> GlobRef.equal gr1 gr2 | MLcons (t1, gr1, c1), MLcons (t2, gr2, c2) -> eq_ml_type t1 t2 && GlobRef.equal gr1 gr2 && List.equal eq_ml_ast c1 c2 | MLtuple t1, MLtuple t2 -> List.equal eq_ml_ast t1 t2 | MLcase (t1, c1, p1), MLcase (t2, c2, p2) -> eq_ml_type t1 t2 && eq_ml_ast c1 c2 && Array.equal eq_ml_branch p1 p2 | MLfix (i1, id1, t1), MLfix (i2, id2, t2) -> Int.equal i1 i2 && Array.equal Id.equal id1 id2 && Array.equal eq_ml_ast t1 t2 | MLexn e1, MLexn e2 -> String.equal e1 e2 | MLdummy k1, MLdummy k2 -> k1 == k2 | MLaxiom, MLaxiom -> true | MLmagic t1, MLmagic t2 -> eq_ml_ast t1 t2 | _ -> false and eq_ml_pattern p1 p2 = match p1, p2 with | Pcons (gr1, p1), Pcons (gr2, p2) -> GlobRef.equal gr1 gr2 && List.equal eq_ml_pattern p1 p2 | Ptuple p1, Ptuple p2 -> List.equal eq_ml_pattern p1 p2 | Prel i1, Prel i2 -> Int.equal i1 i2 | Pwild, Pwild -> true | Pusual gr1, Pusual gr2 -> GlobRef.equal gr1 gr2 | _ -> false and eq_ml_branch (id1, p1, t1) (id2, p2, t2) = List.equal eq_ml_ident id1 id2 && eq_ml_pattern p1 p2 && eq_ml_ast t1 t2 (*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care of the number of bingings crossed before reaching the [MLrel]. *) let ast_iter_rel f = let rec iter n = function | MLrel i -> f (i-n) | MLlam (_,a) -> iter (n+1) a | MLletin (_,a,b) -> iter n a; iter (n+1) b | MLcase (_,a,v) -> iter n a; Array.iter (fun (l,_,t) -> iter (n + (List.length l)) t) v | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v | MLapp (a,l) -> iter n a; List.iter (iter n) l | MLcons (_,_,l) | MLtuple l -> List.iter (iter n) l | MLmagic a -> iter n a | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> () in iter 0 (*s Map over asts. *) let ast_map_branch f (c,ids,a) = (c,ids,f a) (* Warning: in [ast_map] we assume that [f] does not change the type of [MLcons] and of [MLcase] heads *) let ast_map f = function | MLlam (i,a) -> MLlam (i, f a) | MLletin (i,a,b) -> MLletin (i, f a, f b) | MLcase (typ,a,v) -> MLcase (typ,f a, Array.map (ast_map_branch f) v) | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v) | MLapp (a,l) -> MLapp (f a, List.map f l) | MLcons (typ,c,l) -> MLcons (typ,c, List.map f l) | MLtuple l -> MLtuple (List.map f l) | MLmagic a -> MLmagic (f a) | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom as a -> a (*s Map over asts, with binding depth as parameter. *) let ast_map_lift_branch f n (ids,p,a) = (ids,p, f (n+(List.length ids)) a) (* Same warning as for [ast_map]... *) let ast_map_lift f n = function | MLlam (i,a) -> MLlam (i, f (n+1) a) | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b) | MLcase (typ,a,v) -> MLcase (typ,f n a,Array.map (ast_map_lift_branch f n) v) | MLfix (i,ids,v) -> let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v) | MLapp (a,l) -> MLapp (f n a, List.map (f n) l) | MLcons (typ,c,l) -> MLcons (typ,c, List.map (f n) l) | MLtuple l -> MLtuple (List.map (f n) l) | MLmagic a -> MLmagic (f n a) | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom as a -> a (*s Iter over asts. *) let ast_iter_branch f (c,ids,a) = f a let ast_iter f = function | MLlam (i,a) -> f a | MLletin (i,a,b) -> f a; f b | MLcase (_,a,v) -> f a; Array.iter (ast_iter_branch f) v | MLfix (i,ids,v) -> Array.iter f v | MLapp (a,l) -> f a; List.iter f l | MLcons (_,_,l) | MLtuple l -> List.iter f l | MLmagic a -> f a | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> () (*S Operations concerning De Bruijn indices. *) (*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *) let ast_occurs k t = try ast_iter_rel (fun i -> if Int.equal i k then raise Found) t; false with Found -> true (*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)] in [t] with [k<=i<=k'] *) let ast_occurs_itvl k k' t = try ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false with Found -> true (* Number of occurrences of [Rel 1] in [t], with special treatment of match: occurrences in different branches aren't added, but we rather use max. *) let nb_occur_match = let rec nb k = function | MLrel i -> if Int.equal i k then 1 else 0 | MLcase(_,a,v) -> (nb k a) + Array.fold_left (fun r (ids,_,a) -> max r (nb (k+(List.length ids)) a)) 0 v | MLletin (_,a,b) -> (nb k a) + (nb (k+1) b) | MLfix (_,ids,v) -> let k = k+(Array.length ids) in Array.fold_left (fun r a -> r+(nb k a)) 0 v | MLlam (_,a) -> nb (k+1) a | MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l | MLcons (_,_,l) | MLtuple l -> List.fold_left (fun r a -> r+(nb k a)) 0 l | MLmagic a -> nb k a | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> 0 in nb 1 (* Replace unused variables by _ *) let dump_unused_vars a = let rec ren env a = match a with | MLrel i -> let () = (List.nth env (i-1)) := true in a | MLlam (id,b) -> let occ_id = ref false in let b' = ren (occ_id::env) b in if !occ_id then if b' == b then a else MLlam(id,b') else MLlam(Dummy,b') | MLletin (id,b,c) -> let occ_id = ref false in let b' = ren env b in let c' = ren (occ_id::env) c in if !occ_id then if b' == b && c' == c then a else MLletin(id,b',c') else (* 'let' without occurrence: shouldn't happen after simpl *) MLletin(Dummy,b',c') | MLcase (t,e,br) -> let e' = ren env e in let br' = Array.Smart.map (ren_branch env) br in if e' == e && br' == br then a else MLcase (t,e',br') | MLfix (i,ids,v) -> let env' = List.init (Array.length ids) (fun _ -> ref false) @ env in let v' = Array.Smart.map (ren env') v in if v' == v then a else MLfix (i,ids,v') | MLapp (b,l) -> let b' = ren env b and l' = List.Smart.map (ren env) l in if b' == b && l' == l then a else MLapp (b',l') | MLcons(t,r,l) -> let l' = List.Smart.map (ren env) l in if l' == l then a else MLcons (t,r,l') | MLtuple l -> let l' = List.Smart.map (ren env) l in if l' == l then a else MLtuple l' | MLmagic b -> let b' = ren env b in if b' == b then a else MLmagic b' | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> a and ren_branch env ((ids,p,b) as tr) = let occs = List.map (fun _ -> ref false) ids in let b' = ren (List.rev_append occs env) b in let ids' = List.map2 (fun id occ -> if !occ then id else Dummy) ids occs in if b' == b && List.equal eq_ml_ident ids ids' then tr else (ids',p,b') in ren [] a (*s Lifting on terms. [ast_lift k t] lifts the binding depth of [t] across [k] bindings. *) let ast_lift k t = let rec liftrec n = function | MLrel i as a -> if i-n < 1 then a else MLrel (i+k) | a -> ast_map_lift liftrec n a in if Int.equal k 0 then t else liftrec 0 t let ast_pop t = ast_lift (-1) t (*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ... Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *) let permut_rels k k' = let rec permut n = function | MLrel i as a -> let i' = i-n in if i'<1 || i'>k+k' then a else if i'<=k then MLrel (i+k') else MLrel (i-k) | a -> ast_map_lift permut n a in permut 0 (*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t]. Lifting (of one binder) is done at the same time. *) let ast_subst e = let rec subst n = function | MLrel i as a -> let i' = i-n in if Int.equal i' 1 then ast_lift n e else if i'<1 then a else MLrel (i-1) | a -> ast_map_lift subst n a in subst 0 (*s Generalized substitution. [gen_subst v d t] applies to [t] the substitution coded in the [v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies to [Rel] greater than [Array.length v]. *) let gen_subst v d t = let rec subst n = function | MLrel i as a -> let i'= i-n in if i' < 1 then a else if i' <= Array.length v then match v.(i'-1) with | None -> assert false | Some u -> ast_lift n u else MLrel (i+d) | a -> ast_map_lift subst n a in subst 0 t (*S Operations concerning match patterns *) let is_basic_pattern = function | Prel _ | Pwild -> true | Pusual _ | Pcons _ | Ptuple _ -> false let has_deep_pattern br = let deep = function | Pcons (_,l) | Ptuple l -> not (List.for_all is_basic_pattern l) | Pusual _ | Prel _ | Pwild -> false in Array.exists (function (_,pat,_) -> deep pat) br let is_regular_match br = if Array.is_empty br then false (* empty match becomes MLexn *) else try let get_r (ids,pat,c) = match pat with | Pusual r -> r | Pcons (r,l) -> let is_rel i = function Prel j -> Int.equal i j | _ -> false in if not (List.for_all_i is_rel 1 (List.rev l)) then raise Impossible; r | _ -> raise Impossible in let ind = match get_r br.(0) with | ConstructRef (ind,_) -> ind | _ -> raise Impossible in let is_ref i tr = match get_r tr with | ConstructRef (ind', j) -> eq_ind ind ind' && Int.equal j (i + 1) | _ -> false in Array.for_all_i is_ref 0 br with Impossible -> false (*S Operations concerning lambdas. *) (*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns [[idn;...;id1]] and the term [t]. *) let collect_lams = let rec collect acc = function | MLlam(id,t) -> collect (id::acc) t | x -> acc,x in collect [] (*s [collect_n_lams] does the same for a precise number of [MLlam]. *) let collect_n_lams = let rec collect acc n t = if Int.equal n 0 then acc,t else match t with | MLlam(id,t) -> collect (id::acc) (n-1) t | _ -> assert false in collect [] (*s [remove_n_lams] just removes some [MLlam]. *) let rec remove_n_lams n t = if Int.equal n 0 then t else match t with | MLlam(_,t) -> remove_n_lams (n-1) t | _ -> assert false (*s [nb_lams] gives the number of head [MLlam]. *) let rec nb_lams = function | MLlam(_,t) -> succ (nb_lams t) | _ -> 0 (*s [named_lams] does the converse of [collect_lams]. *) let rec named_lams ids a = match ids with | [] -> a | id :: ids -> named_lams ids (MLlam (id,a)) (*s The same for a specific identifier (resp. anonymous, dummy) *) let rec many_lams id a = function | 0 -> a | n -> many_lams id (MLlam (id,a)) (pred n) let anonym_tmp_lams a n = many_lams (Tmp anonymous_name) a n let dummy_lams a n = many_lams Dummy a n (*s mixed according to a signature. *) let rec anonym_or_dummy_lams a = function | [] -> a | Keep :: s -> MLlam(anonymous, anonym_or_dummy_lams a s) | Kill _ :: s -> MLlam(Dummy, anonym_or_dummy_lams a s) (*S Operations concerning eta. *) (*s The following function creates [MLrel n;...;MLrel 1] *) let rec eta_args n = if Int.equal n 0 then [] else (MLrel n)::(eta_args (pred n)) (*s Same, but filtered by a signature. *) let rec eta_args_sign n = function | [] -> [] | Keep :: s -> (MLrel n) :: (eta_args_sign (n-1) s) | Kill _ :: s -> eta_args_sign (n-1) s (*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *) let rec test_eta_args_lift k n = function | [] -> Int.equal n 0 | MLrel m :: q -> Int.equal (k+n) m && (test_eta_args_lift k (pred n) q) | _ -> false (*s Computes an eta-reduction. *) let eta_red e = let ids,t = collect_lams e in let n = List.length ids in if Int.equal n 0 then e else match t with | MLapp (f,a) -> let m = List.length a in let ids,body,args = if Int.equal m n then [], f, a else if m < n then List.skipn m ids, f, a else (* m > n *) let a1,a2 = List.chop (m-n) a in [], MLapp (f,a1), a2 in let p = List.length args in if test_eta_args_lift 0 p args && not (ast_occurs_itvl 1 p body) then named_lams ids (ast_lift (-p) body) else e | _ -> e (* Performs an eta-reduction when the core is atomic, or otherwise returns None *) let atomic_eta_red e = let ids,t = collect_lams e in let n = List.length ids in match t with | MLapp (f,a) when test_eta_args_lift 0 n a -> (match f with | MLrel k when k>n -> Some (MLrel (k-n)) | MLglob _ | MLexn _ | MLdummy _ -> Some f | _ -> None) | _ -> None (*s Computes all head linear beta-reductions possible in [(t a)]. Non-linear head beta-redex become let-in. *) let rec linear_beta_red a t = match a,t with | [], _ -> t | a0::a, MLlam (id,t) -> (match nb_occur_match t with | 0 -> linear_beta_red a (ast_pop t) | 1 -> linear_beta_red a (ast_subst a0 t) | _ -> let a = List.map (ast_lift 1) a in MLletin (id, a0, linear_beta_red a t)) | _ -> MLapp (t, a) let rec tmp_head_lams = function | MLlam (id, t) -> MLlam (tmp_id id, tmp_head_lams t) | e -> e (*s Applies a substitution [s] of constants by their body, plus linear beta reductions at modified positions. Moreover, we mark some lambdas as suitable for later linear reduction (this helps the inlining of recursors). *) let rec ast_glob_subst s t = match t with | MLapp ((MLglob ((ConstRef kn) as refe)) as f, a) -> let a = List.map (fun e -> tmp_head_lams (ast_glob_subst s e)) a in (try linear_beta_red a (Refmap'.find refe s) with Not_found -> MLapp (f, a)) | MLglob ((ConstRef kn) as refe) -> (try Refmap'.find refe s with Not_found -> t) | _ -> ast_map (ast_glob_subst s) t (*S Auxiliary functions used in simplification of ML cases. *) (* Factorisation of some match branches into a common "x -> f x" branch may break types sometimes. Example: [type 'x a = A]. Then [let id = function A -> A] has type ['x a -> 'y a], which is incompatible with the type of [let id x = x]. We now check that the type arguments of the inductive are preserved by our transformation. TODO: this verification should be done someday modulo expansion of type definitions. *) (*s [branch_as_function b typ (l,p,c)] tries to see branch [c] as a function [f] applied to [MLcons(r,l)]. For that it transforms any [MLcons(r,l)] in [MLrel 1] and raises [Impossible] if any variable in [l] occurs outside such a [MLcons] *) let branch_as_fun typ (l,p,c) = let nargs = List.length l in let cons = match p with | Pusual r -> MLcons (typ, r, eta_args nargs) | Pcons (r,pl) -> let pat2rel = function Prel i -> MLrel i | _ -> raise Impossible in MLcons (typ, r, List.map pat2rel pl) | _ -> raise Impossible in let rec genrec n = function | MLrel i as c -> let i' = i-n in if i'<1 then c else if i'>nargs then MLrel (i-nargs+1) else raise Impossible | MLcons _ as cons' when eq_ml_ast cons' (ast_lift n cons) -> MLrel (n+1) | a -> ast_map_lift genrec n a in genrec 0 c (*s [branch_as_cst (l,p,c)] tries to see branch [c] as a constant independent from the pattern [MLcons(r,l)]. For that is raises [Impossible] if any variable in [l] occurs in [c], and otherwise returns [c] lifted to appear like a function with one arg (for uniformity with [branch_as_fun]). NB: [MLcons(r,l)] might occur nonetheless in [c], but only when [l] is empty, i.e. when [r] is a constant constructor *) let branch_as_cst (l,_,c) = let n = List.length l in if ast_occurs_itvl 1 n c then raise Impossible; ast_lift (1-n) c (* A branch [MLcons(r,l)->c] can be seen at the same time as a function branch and a constant branch, either because: - [MLcons(r,l)] doesn't occur in [c]. For example : "A -> B" - this constructor is constant (i.e. [l] is empty). For example "A -> A" When searching for the best factorisation below, we'll try both. *) (* The following structure allows recording which element occurred at what position, and then finally return the most frequent element and its positions. *) let census_add, census_max, census_clean = let h = ref [] in let clearf () = h := [] in let rec add k v = function | [] -> raise Not_found | (k', s) as p :: l -> if eq_ml_ast k k' then (k', Int.Set.add v s) :: l else p :: add k v l in let addf k i = try h := add k i !h with Not_found -> h := (k, Int.Set.singleton i) :: !h in let maxf () = let len = ref 0 and lst = ref Int.Set.empty and elm = ref MLaxiom in List.iter (fun (e, s) -> let n = Int.Set.cardinal s in if n > !len then begin len := n; lst := s; elm := e end) !h; (!elm,!lst) in (addf,maxf,clearf) (* [factor_branches] return the longest possible list of branches that have the same factorization, either as a function or as a constant. *) let is_opt_pat (_,p,_) = match p with | Prel _ | Pwild -> true | _ -> false let factor_branches o typ br = if Array.exists is_opt_pat br then None (* already optimized *) else begin census_clean (); for i = 0 to Array.length br - 1 do if o.opt_case_idr then (try census_add (branch_as_fun typ br.(i)) i with Impossible -> ()); if o.opt_case_cst then (try census_add (branch_as_cst br.(i)) i with Impossible -> ()); done; let br_factor, br_set = census_max () in census_clean (); let n = Int.Set.cardinal br_set in if Int.equal n 0 then None else if Array.length br >= 2 && n < 2 then None else Some (br_factor, br_set) end (*s If all branches are functions, try to permute the case and the functions. *) let rec merge_ids ids ids' = match ids,ids' with | [],l -> l | l,[] -> l | i::ids, i'::ids' -> (if i == Dummy then i' else i) :: (merge_ids ids ids') let is_exn = function MLexn _ -> true | _ -> false let permut_case_fun br acc = let nb = ref max_int in Array.iter (fun (_,_,t) -> let ids, c = collect_lams t in let n = List.length ids in if (n < !nb) && (not (is_exn c)) then nb := n) br; if Int.equal !nb max_int || Int.equal !nb 0 then ([],br) else begin let br = Array.copy br in let ids = ref [] in for i = 0 to Array.length br - 1 do let (l,p,t) = br.(i) in let local_nb = nb_lams t in if local_nb < !nb then (* t = MLexn ... *) br.(i) <- (l,p,remove_n_lams local_nb t) else begin let local_ids,t = collect_n_lams !nb t in ids := merge_ids !ids local_ids; br.(i) <- (l,p,permut_rels !nb (List.length l) t) end done; (!ids,br) end (*S Generalized iota-reduction. *) (* Definition of a generalized iota-redex: it's a [MLcase(e,br)] where the head [e] is a [MLcons] or made of [MLcase]'s with [MLcons] as leaf branches. A generalized iota-redex is transformed into beta-redexes. *) (* In [iota_red], we try to simplify a [MLcase(_,MLcons(typ,r,a),br)]. Argument [i] is the branch we consider, we should lift what comes from [br] by [lift] *) let rec iota_red i lift br ((typ,r,a) as cons) = if i >= Array.length br then raise Impossible; let (ids,p,c) = br.(i) in match p with | Pusual r' | Pcons (r',_) when not (GlobRef.equal r' r) -> iota_red (i+1) lift br cons | Pusual r' -> let c = named_lams (List.rev ids) c in let c = ast_lift lift c in MLapp (c,a) | Prel 1 when Int.equal (List.length ids) 1 -> let c = MLlam (List.hd ids, c) in let c = ast_lift lift c in MLapp(c,[MLcons(typ,r,a)]) | Pwild when List.is_empty ids -> ast_lift lift c | _ -> raise Impossible (* TODO: handle some more cases *) (* [iota_gen] is an extension of [iota_red] where we allow to traverse matches in the head of the first match *) let iota_gen br hd = let rec iota k = function | MLcons (typ,r,a) -> iota_red 0 k br (typ,r,a) | MLcase(typ,e,br') -> let new_br = Array.map (fun (i,p,c)->(i,p,iota (k+(List.length i)) c)) br' in MLcase(typ,e,new_br) | _ -> raise Impossible in iota 0 hd let is_atomic = function | MLrel _ | MLglob _ | MLexn _ | MLdummy _ -> true | _ -> false let is_imm_apply = function MLapp (MLrel 1, _) -> true | _ -> false (** Program creates a let-in named "program_branch_NN" for each branch of match. Unfolding them leads to more natural code (and more dummy removal) *) let is_program_branch = function | Tmp _ | Dummy -> false | Id id -> let s = Id.to_string id in try Scanf.sscanf s "program_branch_%d%!" (fun _ -> true) with Scanf.Scan_failure _ | End_of_file -> false let expand_linear_let o id e = o.opt_lin_let || is_tmp id || is_program_branch id || is_imm_apply e (*S The main simplification function. *) (* Some beta-iota reductions + simplifications. *) let rec unmagic = function MLmagic e -> unmagic e | e -> e let is_magic = function MLmagic _ -> true | _ -> false let magic_hd a = match a with | MLmagic _ :: _ -> a | e :: a -> MLmagic e :: a | [] -> assert false let rec simpl o = function | MLapp (f, []) -> simpl o f | MLapp (MLapp(f,a),a') -> simpl o (MLapp(f,a@a')) | MLapp (f, a) -> (* When the head of the application is magic, no need for magic on args *) let a = if is_magic f then List.map unmagic a else a in simpl_app o (List.map (simpl o) a) (simpl o f) | MLcase (typ,e,br) -> let br = Array.map (fun (l,p,t) -> (l,p,simpl o t)) br in simpl_case o typ br (simpl o e) | MLletin(Dummy,_,e) -> simpl o (ast_pop e) | MLletin(id,c,e) -> let e = simpl o e in if (is_atomic c) || (is_atomic e) || (let n = nb_occur_match e in (Int.equal n 0 || (Int.equal n 1 && expand_linear_let o id e))) then simpl o (ast_subst c e) else MLletin(id, simpl o c, e) | MLfix(i,ids,c) -> let n = Array.length ids in if ast_occurs_itvl 1 n c.(i) then MLfix (i, ids, Array.map (simpl o) c) else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *) | MLmagic(MLmagic _ as e) -> simpl o e | MLmagic(MLapp (f,l)) -> simpl o (MLapp (MLmagic f, l)) | MLmagic(MLletin(id,c,e)) -> simpl o (MLletin(id,c,MLmagic e)) | MLmagic(MLcase(typ,e,br)) -> let br' = Array.map (fun (ids,p,c) -> (ids,p,MLmagic c)) br in simpl o (MLcase(typ,e,br')) | MLmagic(MLdummy _ as e) when lang () == Haskell -> e | MLmagic(MLexn _ as e) -> e | MLlam _ as e -> (match atomic_eta_red e with | Some e' -> e' | None -> ast_map (simpl o) e) | a -> ast_map (simpl o) a (* invariant : list [a] of arguments is non-empty *) and simpl_app o a = function | MLlam (Dummy,t) -> simpl o (MLapp (ast_pop t, List.tl a)) | MLlam (id,t) -> (* Beta redex *) (match nb_occur_match t with | 0 -> simpl o (MLapp (ast_pop t, List.tl a)) | 1 when (is_tmp id || o.opt_lin_beta) -> simpl o (MLapp (ast_subst (List.hd a) t, List.tl a)) | _ -> let a' = List.map (ast_lift 1) (List.tl a) in simpl o (MLletin (id, List.hd a, MLapp (t, a')))) | MLmagic (MLlam (id,t)) -> (* When we've at least one argument, we permute the magic and the lambda, to simplify things a bit (see #2795). Alas, the 1st argument must also be magic then. *) simpl_app o (magic_hd a) (MLlam (id,MLmagic t)) | MLletin (id,e1,e2) when o.opt_let_app -> (* Application of a letin: we push arguments inside *) MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a))) | MLcase (typ,e,br) when o.opt_case_app -> (* Application of a case: we push arguments inside *) let br' = Array.map (fun (l,p,t) -> let k = List.length l in let a' = List.map (ast_lift k) a in (l, p, simpl o (MLapp (t,a')))) br in simpl o (MLcase (typ,e,br')) | (MLdummy _ | MLexn _) as e -> e (* We just discard arguments in those cases. *) | f -> MLapp (f,a) (* Invariant : all empty matches should now be [MLexn] *) and simpl_case o typ br e = try (* Generalized iota-redex *) if not o.opt_case_iot then raise Impossible; simpl o (iota_gen br e) with Impossible -> (* Swap the case and the lam if possible *) let ids,br = if o.opt_case_fun then permut_case_fun br [] else [],br in let n = List.length ids in if not (Int.equal n 0) then simpl o (named_lams ids (MLcase (typ, ast_lift n e, br))) else (* Can we merge several branches as the same constant or function ? *) if lang() == Scheme || is_custom_match br then MLcase (typ, e, br) else match factor_branches o typ br with | Some (f,ints) when Int.equal (Int.Set.cardinal ints) (Array.length br) -> (* If all branches have been factorized, we remove the match *) simpl o (MLletin (Tmp anonymous_name, e, f)) | Some (f,ints) -> let last_br = if ast_occurs 1 f then ([Tmp anonymous_name], Prel 1, f) else ([], Pwild, ast_pop f) in let brl = Array.to_list br in let brl_opt = List.filteri (fun i _ -> not (Int.Set.mem i ints)) brl in let brl_opt = brl_opt @ [last_br] in MLcase (typ, e, Array.of_list brl_opt) | None -> MLcase (typ, e, br) (*S Local prop elimination. *) (* We try to eliminate as many [prop] as possible inside an [ml_ast]. *) (*s In a list, it selects only the elements corresponding to a [Keep] in the boolean list [l]. *) let rec select_via_bl l args = match l,args with | [],_ -> args | Keep::l,a::args -> a :: (select_via_bl l args) | Kill _::l,a::args -> select_via_bl l args | _ -> assert false (*s [kill_some_lams] removes some head lambdas according to the signature [bl]. This list is build on the identifier list model: outermost lambda is on the right. [Rels] corresponding to removed lambdas are not supposed to occur (except maybe in the case of Kimplicit), and the other [Rels] are made correct via a [gen_subst]. Output is not directly a [ml_ast], compose with [named_lams] if needed. *) let is_impl_kill = function Kill (Kimplicit _) -> true | _ -> false let kill_some_lams bl (ids,c) = let n = List.length bl in let n' = List.fold_left (fun n b -> if b == Keep then (n+1) else n) 0 bl in if Int.equal n n' then ids,c else if Int.equal n' 0 && not (List.exists is_impl_kill bl) then [],ast_lift (-n) c else begin let v = Array.make n None in let rec parse_ids i j = function | [] -> () | Keep :: l -> v.(i) <- Some (MLrel j); parse_ids (i+1) (j+1) l | Kill (Kimplicit _ as k) :: l -> v.(i) <- Some (MLdummy k); parse_ids (i+1) j l | Kill _ :: l -> parse_ids (i+1) j l in parse_ids 0 1 bl; select_via_bl bl ids, gen_subst v (n'-n) c end (*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or if there is no lambda left at all. In addition, it now accepts a signature that may mention some implicits. *) let rec merge_implicits ids s = match ids, s with | [],_ -> [] | _,[] -> List.map sign_of_id ids | Dummy::ids, _::s -> Kill Kprop :: merge_implicits ids s | _::ids, (Kill (Kimplicit _) as k)::s -> k :: merge_implicits ids s | _::ids, _::s -> Keep :: merge_implicits ids s let kill_dummy_lams sign c = let ids,c = collect_lams c in let bl = merge_implicits ids (List.rev sign) in if not (List.memq Keep bl) then raise Impossible; let rec fst_kill n = function | [] -> raise Impossible | Kill _ :: bl -> n | Keep :: bl -> fst_kill (n+1) bl in let skip = max 0 ((fst_kill 0 bl) - 1) in let ids_skip, ids = List.chop skip ids in let _, bl = List.chop skip bl in let c = named_lams ids_skip c in let ids',c = kill_some_lams bl (ids,c) in (ids,bl), named_lams ids' c (*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c] and a signature [s] and builds a eta-long version. *) (* For example, if [s = [Keep;Keep;Kill Prop;Keep]] then the output is : [fun idn ... id1 x x _ x -> (c' 4 3 __ 1)] with [c' = lift 4 c] *) let eta_expansion_sign s (ids,c) = let rec abs ids rels i = function | [] -> let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels in ids, MLapp (ast_lift (i-1) c, a) | Keep :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l | Kill k :: l -> abs (Dummy :: ids) (MLdummy k :: rels) (i+1) l in abs ids [] 1 s (*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e] in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas corresponding to [Kill _] in [s]. *) let case_expunge s e = let m = List.length s in let n = nb_lams e in let p = if m <= n then collect_n_lams m e else eta_expansion_sign (List.skipn n s) (collect_lams e) in kill_some_lams (List.rev s) p (*s [term_expunge] takes a function [fun idn ... id1 -> c] and a signature [s] and remove dummy lams. The difference with [case_expunge] is that we here leave one dummy lambda if all lambdas are logical dummy and the target language is strict. *) let term_expunge s (ids,c) = if List.is_empty s then c else let ids,c = kill_some_lams (List.rev s) (ids,c) in if List.is_empty ids && lang () != Haskell && sign_kind s == UnsafeLogicalSig then MLlam (Dummy, ast_lift 1 c) else named_lams ids c (*s [kill_dummy_args (ids,bl) r t] looks for occurrences of [MLrel r] in [t] and purge the args of [MLrel r] corresponding to a [Kill] in [bl]. It makes eta-expansion if needed. *) let kill_dummy_args (ids,bl) r t = let m = List.length ids in let sign = List.rev bl in let rec found n = function | MLrel r' when Int.equal r' (r + n) -> true | MLmagic e -> found n e | _ -> false in let rec killrec n = function | MLapp(e, a) when found n e -> let k = max 0 (m - (List.length a)) in let a = List.map (killrec n) a in let a = List.map (ast_lift k) a in let a = select_via_bl sign (a @ (eta_args k)) in named_lams (List.firstn k ids) (MLapp (ast_lift k e, a)) | e when found n e -> let a = select_via_bl sign (eta_args m) in named_lams ids (MLapp (ast_lift m e, a)) | e -> ast_map_lift killrec n e in killrec 0 t (*s The main function for local [dummy] elimination. *) let sign_of_args a = List.map (function MLdummy k -> Kill k | _ -> Keep) a let rec kill_dummy = function | MLfix(i,fi,c) -> (try let k,c = kill_dummy_fix i c [] in ast_subst (MLfix (i,fi,c)) (kill_dummy_args k 1 (MLrel 1)) with Impossible -> MLfix (i,fi,Array.map kill_dummy c)) | MLapp (MLfix (i,fi,c),a) -> let a = List.map kill_dummy a in (* Heuristics: if some arguments are implicit args, we try to eliminate the corresponding arguments of the fixpoint *) (try let k,c = kill_dummy_fix i c (sign_of_args a) in let fake = MLapp (MLrel 1, List.map (ast_lift 1) a) in let fake' = kill_dummy_args k 1 fake in ast_subst (MLfix (i,fi,c)) fake' with Impossible -> MLapp(MLfix(i,fi,Array.map kill_dummy c),a)) | MLletin(id, MLfix (i,fi,c),e) -> (try let k,c = kill_dummy_fix i c [] in let e = kill_dummy (kill_dummy_args k 1 e) in MLletin(id, MLfix(i,fi,c),e) with Impossible -> MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e)) | MLletin(id,c,e) -> (try let k,c = kill_dummy_lams [] (kill_dummy_hd c) in let e = kill_dummy (kill_dummy_args k 1 e) in let c = kill_dummy c in if is_atomic c then ast_subst c e else MLletin (id, c, e) with Impossible -> MLletin(id,kill_dummy c,kill_dummy e)) | a -> ast_map kill_dummy a (* Similar function, but acting only on head lambdas and let-ins *) and kill_dummy_hd = function | MLlam(id,e) -> MLlam(id, kill_dummy_hd e) | MLletin(id,c,e) -> (try let k,c = kill_dummy_lams [] (kill_dummy_hd c) in let e = kill_dummy_hd (kill_dummy_args k 1 e) in let c = kill_dummy c in if is_atomic c then ast_subst c e else MLletin (id, c, e) with Impossible -> MLletin(id,kill_dummy c,kill_dummy_hd e)) | a -> a and kill_dummy_fix i c s = let n = Array.length c in let k,ci = kill_dummy_lams s (kill_dummy_hd c.(i)) in let c = Array.copy c in c.(i) <- ci; for j = 0 to (n-1) do c.(j) <- kill_dummy (kill_dummy_args k (n-i) c.(j)) done; k,c (*s Putting things together. *) let normalize a = let o = optims () in let rec norm a = let a' = if o.opt_kill_dum then kill_dummy (simpl o a) else simpl o a in if eq_ml_ast a a' then a else norm a' in norm a (*S Special treatment of fixpoint for pretty-printing purpose. *) let general_optimize_fix f ids n args m c = let v = Array.make n 0 in for i=0 to (n-1) do v.(i)<-i done; let aux i = function | MLrel j when v.(j-1)>=0 -> if ast_occurs (j+1) c then raise Impossible else v.(j-1)<-(-i-1) | _ -> raise Impossible in List.iteri aux args; let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in let new_f = anonym_tmp_lams (MLapp (MLrel (n+m+1),args_f)) m in let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in MLfix(0,[|f|],[|new_c|]) let optimize_fix a = if not (optims()).opt_fix_fun then a else let ids,a' = collect_lams a in let n = List.length ids in if Int.equal n 0 then a else match a' with | MLfix(_,[|f|],[|c|]) -> let new_f = MLapp (MLrel (n+1),eta_args n) in let new_c = named_lams ids (normalize (ast_subst new_f c)) in MLfix(0,[|f|],[|new_c|]) | MLapp(a',args) -> let m = List.length args in (match a' with | MLfix(_,_,_) when (test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a') -> a' | MLfix(_,[|f|],[|c|]) -> (try general_optimize_fix f ids n args m c with Impossible -> a) | _ -> a) | _ -> a (*S Inlining. *) (* Utility functions used in the decision of inlining. *) let ml_size_branch size pv = Array.fold_left (fun a (_,_,t) -> a + size t) 0 pv let rec ml_size = function | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l | MLlam(_,t) -> 1 + ml_size t | MLcons(_,_,l) | MLtuple l -> ml_size_list l | MLcase(_,t,pv) -> 1 + ml_size t + ml_size_branch ml_size pv | MLfix(_,_,f) -> ml_size_array f | MLletin (_,_,t) -> ml_size t | MLmagic t -> ml_size t | MLglob _ | MLrel _ | MLexn _ | MLdummy _ | MLaxiom -> 0 and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l and ml_size_array a = Array.fold_left (fun a t -> a + ml_size t) 0 a let is_fix = function MLfix _ -> true | _ -> false (*s Strictness *) (* A variable is strict if the evaluation of the whole term implies the evaluation of this variable. Non-strict variables can be found behind Match, for example. Expanding a term [t] is a good idea when it begins by at least one non-strict lambda, since the corresponding argument to [t] might be unevaluated in the expanded code. *) exception Toplevel let lift n l = List.map ((+) n) l let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l (* This function returns a list of de Bruijn indices of non-strict variables, or raises [Toplevel] if it has an internal non-strict variable. In fact, not all variables are checked for strictness, only the ones which de Bruijn index is in the candidates list [cand]. The flag [add] controls the behaviour when going through a lambda: should we add the corresponding variable to the candidates? We use this flag to check only the external lambdas, those that will correspond to arguments. *) let rec non_stricts add cand = function | MLlam (id,t) -> let cand = lift 1 cand in let cand = if add then 1::cand else cand in pop 1 (non_stricts add cand t) | MLrel n -> List.filter (fun m -> not (Int.equal m n)) cand | MLapp (t,l)-> let cand = non_stricts false cand t in List.fold_left (non_stricts false) cand l | MLcons (_,_,l) -> List.fold_left (non_stricts false) cand l | MLletin (_,t1,t2) -> let cand = non_stricts false cand t1 in pop 1 (non_stricts add (lift 1 cand) t2) | MLfix (_,i,f)-> let n = Array.length i in let cand = lift n cand in let cand = Array.fold_left (non_stricts false) cand f in pop n cand | MLcase (_,t,v) -> (* The only interesting case: for a variable to be non-strict, *) (* it is sufficient that it appears non-strict in at least one branch, *) (* so we make an union (in fact a merge). *) let cand = non_stricts false cand t in Array.fold_left (fun c (i,_,t)-> let n = List.length i in let cand = lift n cand in let cand = pop n (non_stricts add cand t) in List.merge Int.compare cand c) [] v (* [merge] may duplicates some indices, but I don't mind. *) | MLmagic t -> non_stricts add cand t | _ -> cand (* The real test: we are looking for internal non-strict variables, so we start with no candidates, and the only positive answer is via the [Toplevel] exception. *) let is_not_strict t = try let _ = non_stricts true [] t in false with Toplevel -> true (*s Inlining decision *) (* [inline_test] answers the following question: If we could inline [t] (the user said nothing special), should we inline ? We expand small terms with at least one non-strict variable (i.e. a variable that may not be evaluated). Furthermore we don't expand fixpoints. Moreover, as mentioned by X. Leroy (bug #2241), inlining a constant from inside an opaque module might break types. To avoid that, we require below that both [r] and its body are globally visible. This isn't fully satisfactory, since [r] might not be visible (functor), and anyway it might be interesting to inline [r] at least inside its own structure. But to be safe, we adopt this restriction for the moment. *) open Declareops let inline_test r t = if not (auto_inline ()) then false else let c = match r with ConstRef c -> c | _ -> assert false in let has_body = try constant_has_body (Global.lookup_constant c) with Not_found -> false in has_body && (let t1 = eta_red t in let t2 = snd (collect_lams t1) in not (is_fix t2) && ml_size t < 12 && is_not_strict t) let con_of_string s = let d, id = Libnames.split_dirpath (dirpath_of_string s) in Constant.make2 (ModPath.MPfile d) (Label.of_id id) let manual_inline_set = List.fold_right (fun x -> Cset_env.add (con_of_string x)) [ "Coq.Init.Wf.well_founded_induction_type"; "Coq.Init.Wf.well_founded_induction"; "Coq.Init.Wf.Acc_iter"; "Coq.Init.Wf.Fix_F"; "Coq.Init.Wf.Fix"; "Coq.Init.Datatypes.andb"; "Coq.Init.Datatypes.orb"; "Coq.Init.Logic.eq_rec_r"; "Coq.Init.Logic.eq_rect_r"; "Coq.Init.Specif.proj1_sig"; ] Cset_env.empty let manual_inline = function | ConstRef c -> Cset_env.mem c manual_inline_set | _ -> false (* If the user doesn't say he wants to keep [t], we inline in two cases: \begin{itemize} \item the user explicitly requests it \item [expansion_test] answers that the inlining is a good idea, and we are free to act (AutoInline is set) \end{itemize} *) let inline r t = not (to_keep r) (* The user DOES want to keep it *) && not (is_inline_custom r) && (to_inline r (* The user DOES want to inline it *) || (lang () != Haskell && not (is_projection r) && (is_recursor r || manual_inline r || inline_test r t)))