Require Import Bool PArith DecidableClass Omega ROmega. Ltac bool := repeat match goal with | [ H : ?P && ?Q = true |- _ ] => apply andb_true_iff in H; destruct H | |- ?P && ?Q = true => apply <- andb_true_iff; split end. Arguments decide P /H. Hint Extern 5 => progress bool. Ltac define t x H := set (x := t) in *; assert (H : t = x) by reflexivity; clearbody x. Lemma Decidable_sound : forall P (H : Decidable P), decide P = true -> P. Proof. intros P H Hp; apply -> Decidable_spec; assumption. Qed. Lemma Decidable_complete : forall P (H : Decidable P), P -> decide P = true. Proof. intros P H Hp; apply <- Decidable_spec; assumption. Qed. Lemma Decidable_sound_alt : forall P (H : Decidable P), ~ P -> decide P = false. Proof. intros P [wit spec] Hd; destruct wit; simpl; tauto. Qed. Lemma Decidable_complete_alt : forall P (H : Decidable P), decide P = false -> ~ P. Proof. intros P [wit spec] Hd Hc; simpl in *; intuition congruence. Qed. Ltac try_rewrite := repeat match goal with | [ H : ?P |- _ ] => rewrite H end. (* We opacify here decide for proofs, and will make it transparent for reflexive tactics later on. *) Global Opaque decide. Ltac tac_decide := match goal with | [ H : @decide ?P ?D = true |- _ ] => apply (@Decidable_sound P D) in H | [ H : @decide ?P ?D = false |- _ ] => apply (@Decidable_complete_alt P D) in H | [ |- @decide ?P ?D = true ] => apply (@Decidable_complete P D) | [ |- @decide ?P ?D = false ] => apply (@Decidable_sound_alt P D) | [ |- negb ?b = true ] => apply negb_true_iff | [ |- negb ?b = false ] => apply negb_false_iff | [ H : negb ?b = true |- _ ] => apply negb_true_iff in H | [ H : negb ?b = false |- _ ] => apply negb_false_iff in H end. Ltac try_decide := repeat tac_decide. Ltac make_decide P := match goal with | [ |- context [@decide P ?D] ] => let b := fresh "b" in let H := fresh "H" in define (@decide P D) b H; destruct b; try_decide | [ X : context [@decide P ?D] |- _ ] => let b := fresh "b" in let H := fresh "H" in define (@decide P D) b H; destruct b; try_decide end. Ltac case_decide := match goal with | [ |- context [@decide ?P ?D] ] => let b := fresh "b" in let H := fresh "H" in define (@decide P D) b H; destruct b; try_decide | [ X : context [@decide ?P ?D] |- _ ] => let b := fresh "b" in let H := fresh "H" in define (@decide P D) b H; destruct b; try_decide | [ |- context [Pos.compare ?x ?y] ] => destruct (Pos.compare_spec x y); try (exfalso; zify; romega) | [ X : context [Pos.compare ?x ?y] |- _ ] => destruct (Pos.compare_spec x y); try (exfalso; zify; romega) end. Section Definitions. (** * Global, inductive definitions. *) (** A Horner polynomial is either a constant, or a product P × (i + Q), where i is a variable. *) Inductive poly := | Cst : bool -> poly | Poly : poly -> positive -> poly -> poly. (* TODO: We should use [positive] instead of [nat] to encode variables, for efficiency purpose. *) Inductive null : poly -> Prop := | null_intro : null (Cst false). (** Polynomials satisfy a uniqueness condition whenever they are valid. A polynomial [p] satisfies [valid n p] whenever it is well-formed and each of its variable indices is < [n]. *) Inductive valid : positive -> poly -> Prop := | valid_cst : forall k c, valid k (Cst c) | valid_poly : forall k p i q, Pos.lt i k -> ~ null q -> valid i p -> valid (Pos.succ i) q -> valid k (Poly p i q). (** Linear polynomials are valid polynomials in which every variable appears at most once. *) Inductive linear : positive -> poly -> Prop := | linear_cst : forall k c, linear k (Cst c) | linear_poly : forall k p i q, Pos.lt i k -> ~ null q -> linear i p -> linear i q -> linear k (Poly p i q). End Definitions. Section Computational. Program Instance Decidable_PosEq : forall (p q : positive), Decidable (p = q) := { Decidable_witness := Pos.eqb p q }. Next Obligation. apply Pos.eqb_eq. Qed. Program Instance Decidable_PosLt : forall p q, Decidable (Pos.lt p q) := { Decidable_witness := Pos.ltb p q }. Next Obligation. apply Pos.ltb_lt. Qed. Program Instance Decidable_PosLe : forall p q, Decidable (Pos.le p q) := { Decidable_witness := Pos.leb p q }. Next Obligation. apply Pos.leb_le. Qed. (** * The core reflexive part. *) Hint Constructors valid. Fixpoint beq_poly pl pr := match pl with | Cst cl => match pr with | Cst cr => decide (cl = cr) | Poly _ _ _ => false end | Poly pl il ql => match pr with | Cst _ => false | Poly pr ir qr => decide (il = ir) && beq_poly pl pr && beq_poly ql qr end end. (* We could do that with [decide equality] but dependency in proofs is heavy *) Program Instance Decidable_eq_poly : forall (p q : poly), Decidable (eq p q) := { Decidable_witness := beq_poly p q }. Next Obligation. split. revert q; induction p; intros [] ?; simpl in *; bool; try_decide; f_equal; first [intuition congruence|auto]. revert q; induction p; intros [] Heq; simpl in *; bool; try_decide; intuition; try injection Heq; first[congruence|intuition]. Qed. Program Instance Decidable_null : forall p, Decidable (null p) := { Decidable_witness := match p with Cst false => true | _ => false end }. Next Obligation. split. destruct p as [[]|]; first [discriminate|constructor]. inversion 1; trivial. Qed. Definition list_nth {A} p (l : list A) def := Pos.peano_rect (fun _ => list A -> A) (fun l => match l with nil => def | cons t l => t end) (fun _ F l => match l with nil => def | cons t l => F l end) p l. Fixpoint eval var (p : poly) := match p with | Cst c => c | Poly p i q => let vi := list_nth i var false in xorb (eval var p) (andb vi (eval var q)) end. Fixpoint valid_dec k p := match p with | Cst c => true | Poly p i q => negb (decide (null q)) && decide (i < k)%positive && valid_dec i p && valid_dec (Pos.succ i) q end. Program Instance Decidable_valid : forall n p, Decidable (valid n p) := { Decidable_witness := valid_dec n p }. Next Obligation. split. revert n; induction p; unfold valid_dec in *; intuition; bool; try_decide; auto. intros H; induction H; unfold valid_dec in *; bool; try_decide; auto. Qed. (** Basic algebra *) (* Addition of polynomials *) Fixpoint poly_add pl {struct pl} := match pl with | Cst cl => fix F pr := match pr with | Cst cr => Cst (xorb cl cr) | Poly pr ir qr => Poly (F pr) ir qr end | Poly pl il ql => fix F pr {struct pr} := match pr with | Cst cr => Poly (poly_add pl pr) il ql | Poly pr ir qr => match Pos.compare il ir with | Eq => let qs := poly_add ql qr in (* Ensure validity *) if decide (null qs) then poly_add pl pr else Poly (poly_add pl pr) il qs | Gt => Poly (poly_add pl (Poly pr ir qr)) il ql | Lt => Poly (F pr) ir qr end end end. (* Multiply a polynomial by a constant *) Fixpoint poly_mul_cst v p := match p with | Cst c => Cst (andb c v) | Poly p i q => let r := poly_mul_cst v q in (* Ensure validity *) if decide (null r) then poly_mul_cst v p else Poly (poly_mul_cst v p) i r end. (* Multiply a polynomial by a monomial *) Fixpoint poly_mul_mon k p := match p with | Cst c => if decide (null p) then p else Poly (Cst false) k p | Poly p i q => if decide (i <= k)%positive then Poly (Cst false) k (Poly p i q) else Poly (poly_mul_mon k p) i (poly_mul_mon k q) end. (* Multiplication of polynomials *) Fixpoint poly_mul pl {struct pl} := match pl with | Cst cl => poly_mul_cst cl | Poly pl il ql => fun pr => (* Multiply by a factor *) let qs := poly_mul ql pr in (* Ensure validity *) if decide (null qs) then poly_mul pl pr else poly_add (poly_mul pl pr) (poly_mul_mon il qs) end. (** Quotienting a polynomial by the relation X_i^2 ~ X_i *) (* Remove the multiple occurrences of monomials x_k *) Fixpoint reduce_aux k p := match p with | Cst c => Cst c | Poly p i q => if decide (i = k) then poly_add (reduce_aux k p) (reduce_aux k q) else let qs := reduce_aux i q in (* Ensure validity *) if decide (null qs) then (reduce_aux k p) else Poly (reduce_aux k p) i qs end. (* Rewrite any x_k ^ {n + 1} to x_k *) Fixpoint reduce p := match p with | Cst c => Cst c | Poly p i q => let qs := reduce_aux i q in (* Ensure validity *) if decide (null qs) then reduce p else Poly (reduce p) i qs end. End Computational. Section Validity. (* Decision procedure of validity *) Hint Constructors valid linear. Lemma valid_le_compat : forall k l p, valid k p -> (k <= l)%positive -> valid l p. Proof. intros k l p H Hl; induction H; constructor; eauto. now eapply Pos.lt_le_trans; eassumption. Qed. Lemma linear_le_compat : forall k l p, linear k p -> (k <= l)%positive -> linear l p. Proof. intros k l p H; revert l; induction H; constructor; eauto; zify; romega. Qed. Lemma linear_valid_incl : forall k p, linear k p -> valid k p. Proof. intros k p H; induction H; constructor; auto. eapply valid_le_compat; eauto; zify; romega. Qed. End Validity. Section Evaluation. (* Useful simple properties *) Lemma eval_null_zero : forall p var, null p -> eval var p = false. Proof. intros p var []; reflexivity. Qed. Lemma eval_extensional_eq_compat : forall p var1 var2, (forall x, list_nth x var1 false = list_nth x var2 false) -> eval var1 p = eval var2 p. Proof. intros p var1 var2 H; induction p; simpl; try_rewrite; auto. Qed. Lemma eval_suffix_compat : forall k p var1 var2, (forall i, (i < k)%positive -> list_nth i var1 false = list_nth i var2 false) -> valid k p -> eval var1 p = eval var2 p. Proof. intros k p var1 var2 Hvar Hv; revert var1 var2 Hvar. induction Hv; intros var1 var2 Hvar; simpl; [now auto|]. rewrite Hvar; [|now auto]; erewrite (IHHv1 var1 var2). + erewrite (IHHv2 var1 var2); [ring|]. intros; apply Hvar; zify; omega. + intros; apply Hvar; zify; omega. Qed. End Evaluation. Section Algebra. (* Compatibility with evaluation *) Lemma poly_add_compat : forall pl pr var, eval var (poly_add pl pr) = xorb (eval var pl) (eval var pr). Proof. intros pl; induction pl; intros pr var; simpl. + induction pr; simpl; auto; solve [try_rewrite; ring]. + induction pr; simpl; auto; try solve [try_rewrite; simpl; ring]. destruct (Pos.compare_spec p p0); repeat case_decide; simpl; first [try_rewrite; ring|idtac]. try_rewrite; ring_simplify; repeat rewrite xorb_assoc. match goal with [ |- context [xorb (andb ?b1 ?b2) (andb ?b1 ?b3)] ] => replace (xorb (andb b1 b2) (andb b1 b3)) with (andb b1 (xorb b2 b3)) by ring end. rewrite <- IHpl2. match goal with [ H : null ?p |- _ ] => rewrite (eval_null_zero _ _ H) end; ring. simpl; rewrite IHpl1; simpl; ring. Qed. Lemma poly_mul_cst_compat : forall v p var, eval var (poly_mul_cst v p) = andb v (eval var p). Proof. intros v p; induction p; intros var; simpl; [ring|]. case_decide; simpl; try_rewrite; [ring_simplify|ring]. replace (v && list_nth p2 var false && eval var p3) with (list_nth p2 var false && (v && eval var p3)) by ring. rewrite <- IHp2; inversion H; simpl; ring. Qed. Lemma poly_mul_mon_compat : forall i p var, eval var (poly_mul_mon i p) = (list_nth i var false && eval var p). Proof. intros i p var; induction p; simpl; case_decide; simpl; try_rewrite; try ring. inversion H; ring. match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end. match goal with [ |- ?u = ?t ] => set (x := t); destruct x; reflexivity end. Qed. Lemma poly_mul_compat : forall pl pr var, eval var (poly_mul pl pr) = andb (eval var pl) (eval var pr). Proof. intros pl; induction pl; intros pr var; simpl. apply poly_mul_cst_compat. case_decide; simpl. rewrite IHpl1; ring_simplify. replace (eval var pr && list_nth p var false && eval var pl2) with (list_nth p var false && (eval var pl2 && eval var pr)) by ring. now rewrite <- IHpl2; inversion H; simpl; ring. rewrite poly_add_compat, poly_mul_mon_compat, IHpl1, IHpl2; ring. Qed. Hint Extern 5 => match goal with | [ |- (Pos.max ?x ?y <= ?z)%positive ] => apply Pos.max_case_strong; intros; zify; romega | [ |- (?z <= Pos.max ?x ?y)%positive ] => apply Pos.max_case_strong; intros; zify; romega | [ |- (Pos.max ?x ?y < ?z)%positive ] => apply Pos.max_case_strong; intros; zify; romega | [ |- (?z < Pos.max ?x ?y)%positive ] => apply Pos.max_case_strong; intros; zify; romega | _ => zify; omega end. Hint Resolve Pos.le_max_r Pos.le_max_l. Hint Constructors valid linear. (* Compatibility of validity w.r.t algebraic operations *) Lemma poly_add_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr -> valid (Pos.max kl kr) (poly_add pl pr). Proof. intros kl kr pl pr Hl Hr; revert kr pr Hr; induction Hl; intros kr pr Hr; simpl. { eapply valid_le_compat; [clear k|apply Pos.le_max_r]. now induction Hr; auto. } { assert (Hle : (Pos.max (Pos.succ i) kr <= Pos.max k kr)%positive) by auto. apply (valid_le_compat (Pos.max (Pos.succ i) kr)); [|assumption]. clear - IHHl1 IHHl2 Hl2 Hr H0; induction Hr. constructor; auto. now rewrite <- (Pos.max_id i); intuition. destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition). + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. + apply (valid_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; zify; romega. + apply (valid_le_compat (Pos.max (Pos.succ i0) (Pos.succ i0))); [now auto|]; rewrite Pos.max_id; zify; romega. + apply (valid_le_compat (Pos.max (Pos.succ i) i0)); intuition. + apply (valid_le_compat (Pos.max i (Pos.succ i0))); intuition. } Qed. Lemma poly_mul_cst_valid_compat : forall k v p, valid k p -> valid k (poly_mul_cst v p). Proof. intros k v p H; induction H; simpl; [now auto|]. case_decide; [|now auto]. eapply (valid_le_compat i); [now auto|zify; romega]. Qed. Lemma poly_mul_mon_null_compat : forall i p, null (poly_mul_mon i p) -> null p. Proof. intros i p; induction p; simpl; case_decide; simpl; inversion 1; intuition. Qed. Lemma poly_mul_mon_valid_compat : forall k i p, valid k p -> valid (Pos.max (Pos.succ i) k) (poly_mul_mon i p). Proof. intros k i p H; induction H; simpl poly_mul_mon; case_decide; intuition. + apply (valid_le_compat (Pos.succ i)); auto; constructor; intuition. - match goal with [ H : null ?p |- _ ] => solve[inversion H] end. + apply (valid_le_compat k); auto; constructor; intuition. - assert (X := poly_mul_mon_null_compat); intuition eauto. - cutrewrite <- (Pos.max (Pos.succ i) i0 = i0); intuition. - cutrewrite <- (Pos.max (Pos.succ i) (Pos.succ i0) = Pos.succ i0); intuition. Qed. Lemma poly_mul_valid_compat : forall kl kr pl pr, valid kl pl -> valid kr pr -> valid (Pos.max kl kr) (poly_mul pl pr). Proof. intros kl kr pl pr Hl Hr; revert kr pr Hr. induction Hl; intros kr pr Hr; simpl. + apply poly_mul_cst_valid_compat; auto. apply (valid_le_compat kr); now auto. + apply (valid_le_compat (Pos.max (Pos.max i kr) (Pos.max (Pos.succ i) (Pos.max (Pos.succ i) kr)))). - case_decide. { apply (valid_le_compat (Pos.max i kr)); auto. } { apply poly_add_valid_compat; auto. now apply poly_mul_mon_valid_compat; intuition. } - repeat apply Pos.max_case_strong; zify; omega. Qed. (* Compatibility of linearity wrt to linear operations *) Lemma poly_add_linear_compat : forall kl kr pl pr, linear kl pl -> linear kr pr -> linear (Pos.max kl kr) (poly_add pl pr). Proof. intros kl kr pl pr Hl; revert kr pr; induction Hl; intros kr pr Hr; simpl. + apply (linear_le_compat kr); [|apply Pos.max_case_strong; zify; omega]. now induction Hr; constructor; auto. + apply (linear_le_compat (Pos.max kr (Pos.succ i))); [|now auto]. induction Hr; simpl. - constructor; auto. replace i with (Pos.max i i) by (apply Pos.max_id); intuition. - destruct (Pos.compare_spec i i0); subst; try case_decide; repeat (constructor; intuition). { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. } { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. } { apply (linear_le_compat (Pos.max i0 i0)); [now auto|]; rewrite Pos.max_id; auto. } { apply (linear_le_compat (Pos.max i0 (Pos.succ i))); intuition. } { apply (linear_le_compat (Pos.max i (Pos.succ i0))); intuition. } Qed. End Algebra. Section Reduce. (* A stronger version of the next lemma *) Lemma reduce_aux_eval_compat : forall k p var, valid (Pos.succ k) p -> (list_nth k var false && eval var (reduce_aux k p) = list_nth k var false && eval var p). Proof. intros k p var; revert k; induction p; intros k Hv; simpl; auto. inversion Hv; case_decide; subst. + rewrite poly_add_compat; ring_simplify. specialize (IHp1 k); specialize (IHp2 k). destruct (list_nth k var false); ring_simplify; [|now auto]. rewrite <- (andb_true_l (eval var p1)), <- (andb_true_l (eval var p3)). rewrite <- IHp2; auto; rewrite <- IHp1; [ring|]. apply (valid_le_compat k); [now auto|zify; omega]. + remember (list_nth k var false) as b; destruct b; ring_simplify; [|now auto]. case_decide; simpl. - rewrite <- (IHp2 p2); [inversion H|now auto]; simpl. replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring); rewrite <- (IHp1 k). { rewrite <- Heqb; ring. } { apply (valid_le_compat p2); [auto|zify; omega]. } - rewrite (IHp2 p2); [|now auto]. replace (eval var p1) with (list_nth k var false && eval var p1) by (rewrite <- Heqb; ring). rewrite <- (IHp1 k); [rewrite <- Heqb; ring|]. apply (valid_le_compat p2); [auto|zify; omega]. Qed. (* Reduction preserves evaluation by boolean assignations *) Lemma reduce_eval_compat : forall k p var, valid k p -> eval var (reduce p) = eval var p. Proof. intros k p var H; induction H; simpl; auto. case_decide; try_rewrite; simpl. + rewrite <- reduce_aux_eval_compat; auto; inversion H3; simpl; ring. + repeat rewrite reduce_aux_eval_compat; try_rewrite; now auto. Qed. Lemma reduce_aux_le_compat : forall k l p, valid k p -> (k <= l)%positive -> reduce_aux l p = reduce_aux k p. Proof. intros k l p; revert k l; induction p; intros k l H Hle; simpl; auto. inversion H; subst; repeat case_decide; subst; try (exfalso; zify; omega). + apply IHp1; [|now auto]; eapply valid_le_compat; [eauto|zify; omega]. + f_equal; apply IHp1; auto. now eapply valid_le_compat; [eauto|zify; omega]. Qed. (* Reduce projects valid polynomials into linear ones *) Lemma linear_reduce_aux : forall i p, valid (Pos.succ i) p -> linear i (reduce_aux i p). Proof. intros i p; revert i; induction p; intros i Hp; simpl. + constructor. + inversion Hp; subst; case_decide; subst. - rewrite <- (Pos.max_id i) at 1; apply poly_add_linear_compat. { apply IHp1; eapply valid_le_compat; [eassumption|zify; omega]. } { intuition. } - case_decide. { apply IHp1; eapply valid_le_compat; [eauto|zify; omega]. } { constructor; try (zify; omega); auto. erewrite (reduce_aux_le_compat p2); [|assumption|zify; omega]. apply IHp1; eapply valid_le_compat; [eauto|]; zify; omega. } Qed. Lemma linear_reduce : forall k p, valid k p -> linear k (reduce p). Proof. intros k p H; induction H; simpl. + now constructor. + case_decide. - eapply linear_le_compat; [eauto|zify; omega]. - constructor; auto. apply linear_reduce_aux; auto. Qed. End Reduce.