(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* alts | true , false -> s | false,_ -> "" (**********************************************************************) (** Terms *) (* [at_top] means ids of env must be avoided in bound variables *) let pr_constr_core at_top env t = pr_constr_expr (extern_constr at_top env t) let pr_lconstr_core at_top env t = pr_lconstr_expr (extern_constr at_top env t) let pr_lconstr_env_at_top env = pr_lconstr_core true env let pr_lconstr_env env = pr_lconstr_core false env let pr_constr_env env = pr_constr_core false env let pr_open_lconstr_env env (_,c) = pr_lconstr_env env c let pr_open_constr_env env (_,c) = pr_constr_env env c (* NB do not remove the eta-redexes! Global.env() has side-effects... *) let pr_lconstr t = pr_lconstr_env (Global.env()) t let pr_constr t = pr_constr_env (Global.env()) t let pr_open_lconstr (_,c) = pr_lconstr c let pr_open_constr (_,c) = pr_constr c let pr_type_core at_top env t = pr_constr_expr (extern_type at_top env t) let pr_ltype_core at_top env t = pr_lconstr_expr (extern_type at_top env t) let pr_ltype_env_at_top env = pr_ltype_core true env let pr_ltype_env env = pr_ltype_core false env let pr_type_env env = pr_type_core false env let pr_ltype t = pr_ltype_env (Global.env()) t let pr_type t = pr_type_env (Global.env()) t let pr_ljudge_env env j = (pr_lconstr_env env j.uj_val, pr_lconstr_env env j.uj_type) let pr_ljudge j = pr_ljudge_env (Global.env()) j let pr_lrawconstr_env env c = pr_lconstr_expr (extern_rawconstr (vars_of_env env) c) let pr_rawconstr_env env c = pr_constr_expr (extern_rawconstr (vars_of_env env) c) let pr_lrawconstr c = pr_lconstr_expr (extern_rawconstr Idset.empty c) let pr_rawconstr c = pr_constr_expr (extern_rawconstr Idset.empty c) let pr_cases_pattern t = pr_cases_pattern_expr (extern_cases_pattern Idset.empty t) let pr_lconstr_pattern_env env c = pr_lconstr_expr (extern_constr_pattern (names_of_rel_context env) c) let pr_constr_pattern_env env c = pr_constr_expr (extern_constr_pattern (names_of_rel_context env) c) let pr_lconstr_pattern t = pr_lconstr_expr (extern_constr_pattern empty_names_context t) let pr_constr_pattern t = pr_constr_expr (extern_constr_pattern empty_names_context t) let pr_sort s = pr_rawsort (extern_sort s) let _ = Termops.set_print_constr pr_lconstr_env (**********************************************************************) (* Global references *) let pr_global_env = pr_global_env let pr_global = pr_global_env Idset.empty let pr_constant env cst = pr_global_env (vars_of_env env) (ConstRef cst) let pr_existential env ev = pr_lconstr_env env (mkEvar ev) let pr_inductive env ind = pr_lconstr_env env (mkInd ind) let pr_constructor env cstr = pr_lconstr_env env (mkConstruct cstr) let pr_evaluable_reference ref = let ref' = match ref with | EvalConstRef const -> ConstRef const | EvalVarRef sp -> VarRef sp in pr_global ref' (*let pr_rawterm t = pr_lconstr (Constrextern.extern_rawconstr Idset.empty t)*) (*open Pattern let pr_pattern t = pr_pattern_env (Global.env()) empty_names_context t*) (**********************************************************************) (* Contexts and declarations *) let pr_var_decl env (id,c,typ) = let pbody = match c with | None -> (mt ()) | Some c -> (* Force evaluation *) let pb = pr_lconstr_env env c in let pb = if isCast c then surround pb else pb in (str" := " ++ pb ++ cut () ) in let pt = pr_ltype_env env typ in let ptyp = (str" : " ++ pt) in (pr_id id ++ hov 0 (pbody ++ ptyp)) let pr_rel_decl env (na,c,typ) = let pbody = match c with | None -> mt () | Some c -> (* Force evaluation *) let pb = pr_lconstr_env env c in let pb = if isCast c then surround pb else pb in (str":=" ++ spc () ++ pb ++ spc ()) in let ptyp = pr_ltype_env env typ in match na with | Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) | Name id -> hov 0 (pr_id id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) (* Prints out an "env" in a nice format. We print out the * signature,then a horizontal bar, then the debruijn environment. * It's printed out from outermost to innermost, so it's readable. *) (* Prints a signature, all declarations on the same line if possible *) let pr_named_context_of env = hv 0 (fold_named_context (fun env d pps -> pps ++ ws 2 ++ pr_var_decl env d) env ~init:(mt ())) let pr_named_context env ne_context = hv 0 (Sign.fold_named_context (fun d pps -> pps ++ ws 2 ++ pr_var_decl env d) ne_context ~init:(mt ())) let pr_rel_context env rel_context = let rec prec env = function | [] -> (mt ()) | [b] -> str "(" ++ pr_rel_decl env b ++ str")" | b::rest -> let pb = pr_rel_decl env b in let penvtl = prec (push_rel b env) rest in str "(" ++ pb ++ str")" ++ spc () ++ penvtl in hov 0 (prec env (List.rev rel_context)) let pr_rel_context_of env = pr_rel_context env (rel_context env) (* Prints an env (variables and de Bruijn). Separator: newline *) let pr_context_unlimited env = let sign_env = fold_named_context (fun env d pps -> let pidt = pr_var_decl env d in (pps ++ fnl () ++ pidt)) env ~init:(mt ()) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) let pr_ne_context_of header env = if Environ.rel_context env = empty_rel_context & Environ.named_context env = empty_named_context then (mt ()) else let penv = pr_context_unlimited env in (header ++ penv ++ fnl ()) let pr_context_limit n env = let named_context = Environ.named_context env in let lgsign = List.length named_context in if n >= lgsign then pr_context_unlimited env else let k = lgsign-n in let _,sign_env = fold_named_context (fun env d (i,pps) -> if i < k then (i+1, (pps ++str ".")) else let pidt = pr_var_decl env d in (i+1, (pps ++ fnl () ++ str (emacs_str (String.make 1 (Char.chr 253)) "") ++ pidt))) env ~init:(0,(mt ())) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env d in (pps ++ fnl () ++ str (emacs_str (String.make 1 (Char.chr 253)) "") ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) let pr_context_of env = match Options.print_hyps_limit () with | None -> hv 0 (pr_context_unlimited env) | Some n -> hv 0 (pr_context_limit n env) (* display goal parts (Proof mode) *) let pr_restricted_named_context among env = hv 0 (fold_named_context (fun env ((id,_,_) as d) pps -> if true || Idset.mem id among then pps ++ fnl () ++ str (emacs_str (String.make 1 (Char.chr 253)) "") ++ pr_var_decl env d else pps) env ~init:(mt ())) let pr_subgoal_metas metas env= let pr_one (meta,typ) = str "?" ++ int meta ++ str " : " ++ hov 0 (pr_ltype_env_at_top env typ) ++ fnl () ++ str (emacs_str (String.make 1 (Char.chr 253)) "") in hv 0 (prlist_with_sep mt pr_one metas) (* display complete goal *) let default_pr_goal g = let env = evar_env g in let preamb,penv,pc = if g.evar_extra = None then mt (), pr_context_of env, pr_ltype_env_at_top env g.evar_concl else (str " *** Declarative Mode ***" ++ fnl ()++fnl ()), pr_context_of env, pr_ltype_env_at_top env g.evar_concl in preamb ++ str" " ++ hv 0 (penv ++ fnl () ++ str (emacs_str (String.make 1 (Char.chr 253)) "") ++ str "============================" ++ fnl () ++ str"thesis := " ++ fnl () ++ str " " ++ pc) ++ fnl () (* display the conclusion of a goal *) let pr_concl n g = let env = evar_env g in let pc = pr_ltype_env_at_top env g.evar_concl in str (emacs_str (String.make 1 (Char.chr 253)) "") ++ str "subgoal " ++ int n ++ str " is:" ++ cut () ++ str" " ++ pc (* display evar type: a context and a type *) let pr_evgl_sign gl = let ps = pr_named_context_of (evar_env gl) in let pc = pr_lconstr gl.evar_concl in hov 0 (str"[" ++ ps ++ spc () ++ str"|- " ++ pc ++ str"]") (* Print an enumerated list of existential variables *) let rec pr_evars_int i = function | [] -> (mt ()) | (ev,evd)::rest -> let pegl = pr_evgl_sign evd in let pei = pr_evars_int (i+1) rest in (hov 0 (str "Existential " ++ int i ++ str " =" ++ spc () ++ str (string_of_existential ev) ++ str " : " ++ pegl)) ++ fnl () ++ pei let default_pr_subgoal n = let rec prrec p = function | [] -> error "No such goal" | g::rest -> if p = 1 then let pg = default_pr_goal g in v 0 (str "subgoal " ++ int n ++ str " is:" ++ cut () ++ pg) else prrec (p-1) rest in prrec n (* Print open subgoals. Checks for uninstantiated existential variables *) let default_pr_subgoals close_cmd sigma = function | [] -> begin match close_cmd with Some cmd -> (str "Subproof completed, now type " ++ str cmd ++ str "." ++ fnl ()) | None -> let exl = Evarutil.non_instantiated sigma in if exl = [] then (str"Proof completed." ++ fnl ()) else let pei = pr_evars_int 1 exl in (str "No more subgoals but non-instantiated existential " ++ str "variables :" ++fnl () ++ (hov 0 pei)) end | [g] -> let pg = default_pr_goal g in v 0 (str ("1 "^"subgoal") ++cut () ++ pg) | g1::rest -> let rec pr_rec n = function | [] -> (mt ()) | g::rest -> let pc = pr_concl n g in let prest = pr_rec (n+1) rest in (cut () ++ pc ++ prest) in let pg1 = default_pr_goal g1 in let prest = pr_rec 2 rest in v 0 (int(List.length rest+1) ++ str" subgoals" ++ cut () ++ pg1 ++ prest ++ fnl ()) (**********************************************************************) (* Abstraction layer *) type printer_pr = { pr_subgoals : string option -> evar_map -> goal list -> std_ppcmds; pr_subgoal : int -> goal list -> std_ppcmds; pr_goal : goal -> std_ppcmds; } let default_printer_pr = { pr_subgoals = default_pr_subgoals; pr_subgoal = default_pr_subgoal; pr_goal = default_pr_goal; } let printer_pr = ref default_printer_pr let set_printer_pr = (:=) printer_pr let pr_subgoals x = !printer_pr.pr_subgoals x let pr_subgoal x = !printer_pr.pr_subgoal x let pr_goal x = !printer_pr.pr_goal x (* End abstraction layer *) (**********************************************************************) let pr_subgoals_of_pfts pfts = let close_cmd = Decl_mode.get_end_command pfts in let gls = fst (Refiner.frontier (proof_of_pftreestate pfts)) in let sigma = (top_goal_of_pftreestate pfts).sigma in pr_subgoals close_cmd sigma gls let pr_open_subgoals () = let pfts = get_pftreestate () in match focus() with | 0 -> pr_subgoals_of_pfts pfts | n -> let pf = proof_of_pftreestate pfts in let gls = fst (frontier pf) in assert (n > List.length gls); if List.length gls < 2 then pr_subgoal n gls else (* LEM TODO: this way of saying how many subgoals has to be abstracted out*) v 0 (int(List.length gls) ++ str" subgoals" ++ cut () ++ pr_subgoal n gls) let pr_nth_open_subgoal n = let pf = proof_of_pftreestate (get_pftreestate ()) in pr_subgoal n (fst (frontier pf)) (* Elementary tactics *) let pr_prim_rule = function | Intro id -> str"intro " ++ pr_id id | Intro_replacing id -> (str"intro replacing " ++ pr_id id) | Cut (b,id,t) -> if b then (str"assert " ++ pr_constr t) else (str"cut " ++ pr_constr t ++ str ";[intro " ++ pr_id id ++ str "|idtac]") | FixRule (f,n,[]) -> (str"fix " ++ pr_id f ++ str"/" ++ int n) | FixRule (f,n,others) -> let rec print_mut = function | (f,n,ar)::oth -> pr_id f ++ str"/" ++ int n ++ str" : " ++ pr_lconstr ar ++ print_mut oth | [] -> mt () in (str"fix " ++ pr_id f ++ str"/" ++ int n ++ str" with " ++ print_mut others) | Cofix (f,[]) -> (str"cofix " ++ pr_id f) | Cofix (f,others) -> let rec print_mut = function | (f,ar)::oth -> (pr_id f ++ str" : " ++ pr_lconstr ar ++ print_mut oth) | [] -> mt () in (str"cofix " ++ pr_id f ++ str" with " ++ print_mut others) | Refine c -> str(if occur_meta c then "refine " else "exact ") ++ Constrextern.with_meta_as_hole pr_constr c | Convert_concl (c,_) -> (str"change " ++ pr_constr c) | Convert_hyp (id,None,t) -> (str"change " ++ pr_constr t ++ spc () ++ str"in " ++ pr_id id) | Convert_hyp (id,Some c,t) -> (str"change " ++ pr_constr c ++ spc () ++ str"in " ++ pr_id id ++ str" (type of " ++ pr_id id ++ str ")") | Thin ids -> (str"clear " ++ prlist_with_sep pr_spc pr_id ids) | ThinBody ids -> (str"clearbody " ++ prlist_with_sep pr_spc pr_id ids) | Move (withdep,id1,id2) -> (str (if withdep then "dependent " else "") ++ str"move " ++ pr_id id1 ++ str " after " ++ pr_id id2) | Rename (id1,id2) -> (str "rename " ++ pr_id id1 ++ str " into " ++ pr_id id2) | Change_evars -> (* This is internal tactic and cannot be replayed at user-level. Function pr_rule_dot below is used when we want to hide Change_evars *) str "Evar change" (* Backwards compatibility *) let prterm = pr_lconstr (* spiwack a little printer function for sets of Environ.assumption *) (* arnaud : tester "Print Assumptions" *) let pr_assumptionset env s = if not (Environ.AssumptionSet.is_empty s) then let (vars, axioms) = Environ.AssumptionSet.partition (function |Variable _ -> true | _ -> false) s in (if not (Environ.AssumptionSet.is_empty vars) then str "Section Variables:" ++ fnl () ++ (Environ.AssumptionSet.fold (function Variable (id,typ ) -> (fun s -> s++str (string_of_identifier id)++str " : "++pr_ltype typ++spc ()) | _ -> assert false) vars (fnl ())) else mt () )++ if not (Environ.AssumptionSet.is_empty axioms) then str "Axioms:" ++ fnl () ++ (Environ.AssumptionSet.fold (function Axiom (cst, typ) -> (fun s -> s++(pr_constant env cst)++str " : "++pr_ltype typ++spc ()) | _ -> assert false) axioms (mt ())) else mt () else raise Not_found