(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* CompatGramext.RightA | Extend.LeftA -> CompatGramext.LeftA | Extend.NonA -> CompatGramext.NonA let of_coq_position = function | Extend.First -> CompatGramext.First | Extend.Last -> CompatGramext.Last | Extend.Before s -> CompatGramext.Before s | Extend.After s -> CompatGramext.After s | Extend.Level s -> CompatGramext.Level s module Symbols = GramextMake(G) let camlp4_verbosity silent f x = let a = !warning_verbose in warning_verbose := silent; f x; warning_verbose := a let camlp4_verbose f x = camlp4_verbosity (Flags.is_verbose ()) f x (** Grammar extensions *) (** NB: [extend_statment = gram_position option * single_extend_statment list] and [single_extend_statment = string option * gram_assoc option * production_rule list] and [production_rule = symbol list * action] In [single_extend_statement], first two parameters are name and assoc iff a level is created *) (** Binding general entry keys to symbol *) let rec of_coq_action : type a r. (r, a, Loc.t -> r) Extend.rule -> a -> G.action = function | Stop -> fun f -> G.action (fun loc -> f (to_coqloc loc)) | Next (r, _) -> fun f -> G.action (fun x -> of_coq_action r (f x)) let rec symbol_of_prod_entry_key : type s a. (s, a) symbol -> _ = function | Atoken t -> Symbols.stoken t | Alist1 s -> Symbols.slist1 (symbol_of_prod_entry_key s) | Alist1sep (s,sep) -> Symbols.slist1sep (symbol_of_prod_entry_key s, symbol_of_prod_entry_key sep) | Alist0 s -> Symbols.slist0 (symbol_of_prod_entry_key s) | Alist0sep (s,sep) -> Symbols.slist0sep (symbol_of_prod_entry_key s, symbol_of_prod_entry_key sep) | Aopt s -> Symbols.sopt (symbol_of_prod_entry_key s) | Aself -> Symbols.sself | Anext -> Symbols.snext | Aentry e -> Symbols.snterm (G.Entry.obj e) | Aentryl (e, n) -> Symbols.snterml (G.Entry.obj e, string_of_int n) | Arules rs -> G.srules' (List.map symbol_of_rules rs) and symbol_of_rule : type s a r. (s, a, r) Extend.rule -> _ = function | Stop -> fun accu -> accu | Next (r, s) -> fun accu -> symbol_of_rule r (symbol_of_prod_entry_key s :: accu) and symbol_of_rules : type a. a Extend.rules -> _ = function | Rules (r, act) -> let symb = symbol_of_rule r.norec_rule [] in let act = of_coq_action r.norec_rule act in (symb, act) let of_coq_production_rule : type a. a Extend.production_rule -> _ = function | Rule (toks, act) -> (symbol_of_rule toks [], of_coq_action toks act) let of_coq_single_extend_statement (lvl, assoc, rule) = (lvl, Option.map of_coq_assoc assoc, List.map of_coq_production_rule rule) let of_coq_extend_statement (pos, st) = (Option.map of_coq_position pos, List.map of_coq_single_extend_statement st) (** Type of reinitialization data *) type gram_reinit = gram_assoc * gram_position type extend_rule = | ExtendRule : 'a G.entry * gram_reinit option * 'a extend_statment -> extend_rule type ext_kind = | ByGrammar of extend_rule | ByEXTEND of (unit -> unit) * (unit -> unit) (** The list of extensions *) let camlp4_state = ref [] (** Deletion *) let grammar_delete e reinit (pos,rls) = List.iter (fun (n,ass,lev) -> List.iter (fun (pil,_) -> G.delete_rule e pil) (List.rev lev)) (List.rev rls); match reinit with | Some (a,ext) -> let a = of_coq_assoc a in let ext = of_coq_position ext in let lev = match pos with | Some (CompatGramext.Level n) -> n | _ -> assert false in maybe_uncurry (G.extend e) (Some ext, [Some lev,Some a,[]]) | None -> () (** Extension *) let grammar_extend e reinit ext = let ext = of_coq_extend_statement ext in let undo () = grammar_delete e reinit ext in let redo () = camlp4_verbosity false (maybe_uncurry (G.extend e)) ext in camlp4_state := ByEXTEND (undo, redo) :: !camlp4_state; redo () let grammar_extend_sync e reinit ext = camlp4_state := ByGrammar (ExtendRule (e, reinit, ext)) :: !camlp4_state; camlp4_verbosity false (maybe_uncurry (G.extend e)) (of_coq_extend_statement ext) (** The apparent parser of Coq; encapsulate G to keep track of the extensions. *) module Gram = struct include G let extend e = maybe_curry (fun ext -> camlp4_state := (ByEXTEND ((fun () -> grammar_delete e None ext), (fun () -> maybe_uncurry (G.extend e) ext))) :: !camlp4_state; maybe_uncurry (G.extend e) ext) let delete_rule e pil = (* spiwack: if you use load an ML module which contains GDELETE_RULE in a section, God kills a kitty. As it would corrupt remove_grammars. There does not seem to be a good way to undo a delete rule. As deleting takes fewer arguments than extending. The production rule isn't returned by delete_rule. If we could retrieve the necessary information, then ByEXTEND provides just the framework we need to allow this in section. I'm not entirely sure it makes sense, but at least it would be more correct. *) G.delete_rule e pil end (** Remove extensions [n] is the number of extended entries (not the number of Grammar commands!) to remove. *) let rec remove_grammars n = if n>0 then (match !camlp4_state with | [] -> anomaly ~label:"Pcoq.remove_grammars" (Pp.str "too many rules to remove") | ByGrammar (ExtendRule (g, reinit, ext)) :: t -> grammar_delete g reinit (of_coq_extend_statement ext); camlp4_state := t; remove_grammars (n-1) | ByEXTEND (undo,redo)::t -> undo(); camlp4_state := t; remove_grammars n; redo(); camlp4_state := ByEXTEND (undo,redo) :: !camlp4_state) let make_rule r = [None, None, r] (** An entry that checks we reached the end of the input. *) let eoi_entry en = let e = Gram.entry_create ((Gram.Entry.name en) ^ "_eoi") in let symbs = [Symbols.snterm (Gram.Entry.obj en); Symbols.stoken Tok.EOI] in let act = Gram.action (fun _ x loc -> x) in maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]); e let map_entry f en = let e = Gram.entry_create ((Gram.Entry.name en) ^ "_map") in let symbs = [Symbols.snterm (Gram.Entry.obj en)] in let act = Gram.action (fun x loc -> f x) in maybe_uncurry (Gram.extend e) (None, make_rule [symbs, act]); e (* Parse a string, does NOT check if the entire string was read (use eoi_entry) *) let parse_string f x = let strm = Stream.of_string x in Gram.entry_parse f (Gram.parsable strm) type gram_universe = string let utables : (string, unit) Hashtbl.t = Hashtbl.create 97 let create_universe u = let () = Hashtbl.add utables u () in u let uprim = create_universe "prim" let uconstr = create_universe "constr" let utactic = create_universe "tactic" let uvernac = create_universe "vernac" let get_univ u = if Hashtbl.mem utables u then u else raise Not_found let new_entry u s = let ename = u ^ ":" ^ s in let e = Gram.entry_create ename in e let make_gen_entry u s = new_entry u s module GrammarObj = struct type ('r, _, _) obj = 'r Gram.entry let name = "grammar" let default _ = None end module Grammar = Register(GrammarObj) let register_grammar = Grammar.register0 let genarg_grammar = Grammar.obj let create_generic_entry (type a) u s (etyp : a raw_abstract_argument_type) : a Gram.entry = let e = new_entry u s in let Rawwit t = etyp in let () = Grammar.register0 t e in e (* Initial grammar entries *) module Prim = struct let gec_gen n = make_gen_entry uprim n (* Entries that can be referred via the string -> Gram.entry table *) (* Typically for tactic or vernac extensions *) let preident = gec_gen "preident" let ident = gec_gen "ident" let natural = gec_gen "natural" let integer = gec_gen "integer" let bigint = Gram.entry_create "Prim.bigint" let string = gec_gen "string" let reference = make_gen_entry uprim "reference" let by_notation = Gram.entry_create "by_notation" let smart_global = Gram.entry_create "smart_global" (* parsed like ident but interpreted as a term *) let var = gec_gen "var" let name = Gram.entry_create "Prim.name" let identref = Gram.entry_create "Prim.identref" let pidentref = Gram.entry_create "Prim.pidentref" let pattern_ident = Gram.entry_create "pattern_ident" let pattern_identref = Gram.entry_create "pattern_identref" (* A synonym of ident - maybe ident will be located one day *) let base_ident = Gram.entry_create "Prim.base_ident" let qualid = Gram.entry_create "Prim.qualid" let fullyqualid = Gram.entry_create "Prim.fullyqualid" let dirpath = Gram.entry_create "Prim.dirpath" let ne_string = Gram.entry_create "Prim.ne_string" let ne_lstring = Gram.entry_create "Prim.ne_lstring" end module Constr = struct let gec_constr = make_gen_entry uconstr (* Entries that can be referred via the string -> Gram.entry table *) let constr = gec_constr "constr" let operconstr = gec_constr "operconstr" let constr_eoi = eoi_entry constr let lconstr = gec_constr "lconstr" let binder_constr = gec_constr "binder_constr" let ident = make_gen_entry uconstr "ident" let global = make_gen_entry uconstr "global" let universe_level = make_gen_entry uconstr "universe_level" let sort = make_gen_entry uconstr "sort" let pattern = Gram.entry_create "constr:pattern" let constr_pattern = gec_constr "constr_pattern" let lconstr_pattern = gec_constr "lconstr_pattern" let closed_binder = Gram.entry_create "constr:closed_binder" let binder = Gram.entry_create "constr:binder" let binders = Gram.entry_create "constr:binders" let open_binders = Gram.entry_create "constr:open_binders" let binders_fixannot = Gram.entry_create "constr:binders_fixannot" let typeclass_constraint = Gram.entry_create "constr:typeclass_constraint" let record_declaration = Gram.entry_create "constr:record_declaration" let appl_arg = Gram.entry_create "constr:appl_arg" end module Module = struct let module_expr = Gram.entry_create "module_expr" let module_type = Gram.entry_create "module_type" end module Vernac_ = struct let gec_vernac s = Gram.entry_create ("vernac:" ^ s) (* The different kinds of vernacular commands *) let gallina = gec_vernac "gallina" let gallina_ext = gec_vernac "gallina_ext" let command = gec_vernac "command" let syntax = gec_vernac "syntax_command" let vernac = gec_vernac "Vernac.vernac" let vernac_eoi = eoi_entry vernac let rec_definition = gec_vernac "Vernac.rec_definition" let red_expr = make_gen_entry utactic "red_expr" let hint_info = gec_vernac "hint_info" (* Main vernac entry *) let main_entry = Gram.entry_create "vernac" let noedit_mode = gec_vernac "noedit_command" let () = let act_vernac = Gram.action (fun v loc -> Some (!@loc, v)) in let act_eoi = Gram.action (fun _ loc -> None) in let rule = [ ([ Symbols.stoken Tok.EOI ], act_eoi); ([ Symbols.snterm (Gram.Entry.obj vernac) ], act_vernac ); ] in maybe_uncurry (Gram.extend main_entry) (None, make_rule rule) let command_entry_ref = ref noedit_mode let command_entry = Gram.Entry.of_parser "command_entry" (fun strm -> Gram.parse_tokens_after_filter !command_entry_ref strm) end let main_entry = Vernac_.main_entry let set_command_entry e = Vernac_.command_entry_ref := e let get_command_entry () = !Vernac_.command_entry_ref let epsilon_value f e = let r = Rule (Next (Stop, e), fun x _ -> f x) in let ext = of_coq_extend_statement (None, [None, None, [r]]) in let entry = G.entry_create "epsilon" in let () = maybe_uncurry (G.extend entry) ext in try Some (parse_string entry "") with _ -> None (** Synchronized grammar extensions *) module GramState = Store.Make(struct end) type 'a grammar_extension = 'a -> GramState.t -> extend_rule list * GramState.t module GrammarCommand = Dyn.Make(struct end) module GrammarInterp = struct type 'a t = 'a grammar_extension end module GrammarInterpMap = GrammarCommand.Map(GrammarInterp) let grammar_interp = ref GrammarInterpMap.empty let (grammar_stack : (int * GrammarCommand.t * GramState.t) list ref) = ref [] type 'a grammar_command = 'a GrammarCommand.tag let create_grammar_command name interp : _ grammar_command = let obj = GrammarCommand.create name in let () = grammar_interp := GrammarInterpMap.add obj interp !grammar_interp in obj let extend_grammar_command tag g = let modify = GrammarInterpMap.find tag !grammar_interp in let grammar_state = match !grammar_stack with | [] -> GramState.empty | (_, _, st) :: _ -> st in let (rules, st) = modify g grammar_state in let iter (ExtendRule (e, reinit, ext)) = grammar_extend_sync e reinit ext in let () = List.iter iter rules in let nb = List.length rules in grammar_stack := (nb, GrammarCommand.Dyn (tag, g), st) :: !grammar_stack let recover_grammar_command (type a) (tag : a grammar_command) : a list = let filter : _ -> a option = fun (_, GrammarCommand.Dyn (tag', v), _) -> match GrammarCommand.eq tag tag' with | None -> None | Some Refl -> Some v in List.map_filter filter !grammar_stack let extend_dyn_grammar (GrammarCommand.Dyn (tag, g)) = extend_grammar_command tag g (* Summary functions: the state of the lexer is included in that of the parser. Because the grammar affects the set of keywords when adding or removing grammar rules. *) type frozen_t = (int * GrammarCommand.t * GramState.t) list * CLexer.frozen_t let freeze _ : frozen_t = (!grammar_stack, CLexer.freeze ()) (* We compare the current state of the grammar and the state to unfreeze, by computing the longest common suffixes *) let factorize_grams l1 l2 = if l1 == l2 then ([], [], l1) else List.share_tails l1 l2 let number_of_entries gcl = List.fold_left (fun n (p,_,_) -> n + p) 0 gcl let unfreeze (grams, lex) = let (undo, redo, common) = factorize_grams !grammar_stack grams in let n = number_of_entries undo in remove_grammars n; grammar_stack := common; CLexer.unfreeze lex; List.iter extend_dyn_grammar (List.rev_map pi2 redo) (** No need to provide an init function : the grammar state is statically available, and already empty initially, while the lexer state should not be resetted, since it contains keywords declared in g_*.ml4 *) let _ = Summary.declare_summary "GRAMMAR_LEXER" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = Summary.nop } let with_grammar_rule_protection f x = let fs = freeze false in try let a = f x in unfreeze fs; a with reraise -> let reraise = CErrors.push reraise in let () = unfreeze fs in iraise reraise (** Registering grammar of generic arguments *) let () = let open Stdarg in Grammar.register0 wit_int (Prim.integer); Grammar.register0 wit_string (Prim.string); Grammar.register0 wit_pre_ident (Prim.preident); Grammar.register0 wit_ident (Prim.ident); Grammar.register0 wit_var (Prim.var); Grammar.register0 wit_ref (Prim.reference); Grammar.register0 wit_constr (Constr.constr); Grammar.register0 wit_red_expr (Vernac_.red_expr); ()