(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* mkAppC (xI, [pos_of q]) | (q, false) -> mkAppC (xO, [pos_of q]) | (_, true) -> xH in pos_of x let z_of_string pos_or_neg s dloc = let ((xI,xO,xH),(aZERO,aPOS,aNEG)) = get_z_sign dloc in let v = Bignat.of_string s in if is_nonzero v then if pos_or_neg then mkAppC (aPOS, [pos_of_bignat xI xO xH v]) else mkAppC (aNEG, [pos_of_bignat xI xO xH v]) else aZERO (* Declare the primitive parser with Grammar and without the scope mechanism *) let zsyntax_create name = let e = Pcoq.create_constr_entry (Pcoq.get_univ "znatural") name in Pcoq.Gram.Unsafe.clear_entry e; e let number = zsyntax_create "number" let negnumber = zsyntax_create "negnumber" let _ = Gram.extend number None [None, None, [[Gramext.Stoken ("INT", "")], Gramext.action (z_of_string true)]] let _ = Gram.extend negnumber None [None, None, [[Gramext.Stoken ("INT", "")], Gramext.action (z_of_string false)]] (**********************************************************************) (* Old ast printing *) exception Non_closed_number let get_z_sign_ast loc = let ast_of_id id = Termast.ast_of_ref (Nametab.locate (Libnames.make_short_qualid id)) in ((ast_of_id (id_of_string "xI"), ast_of_id (id_of_string "xO"), ast_of_id (id_of_string "xH")), (ast_of_id (id_of_string "ZERO"), ast_of_id (id_of_string "POS"), ast_of_id (id_of_string "NEG"))) let _ = if !Options.v7 then let rec bignat_of_pos c1 c2 c3 p = match p with | Node (_,"APPLIST", [b; a]) when alpha_eq(b,c1) -> mult_2 (bignat_of_pos c1 c2 c3 a) | Node (_,"APPLIST", [b; a]) when alpha_eq(b,c2) -> add_1 (mult_2 (bignat_of_pos c1 c2 c3 a)) | a when alpha_eq(a,c3) -> Bignat.one | _ -> raise Non_closed_number in let bignat_option_of_pos xI xO xH p = try Some (bignat_of_pos xO xI xH p) with Non_closed_number -> None in let pr_pos a = hov 0 (str "POS" ++ brk (1,1) ++ a) in let pr_neg a = hov 0 (str "NEG" ++ brk (1,1) ++ a) in let inside_printer posneg std_pr p = let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in match (bignat_option_of_pos xI xO xH p) with | Some n -> if posneg then (str (Bignat.to_string n)) else (str "(-" ++ str (Bignat.to_string n) ++ str ")") | None -> let pr = if posneg then pr_pos else pr_neg in str "(" ++ pr (std_pr (ope("ZEXPR",[p]))) ++ str ")" in let outside_zero_printer std_pr p = str "`0`" in let outside_printer posneg std_pr p = let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in match (bignat_option_of_pos xI xO xH p) with | Some n -> if posneg then (str "`" ++ str (Bignat.to_string n) ++ str "`") else (str "`-" ++ str (Bignat.to_string n) ++ str "`") | None -> let pr = if posneg then pr_pos else pr_neg in str "(" ++ pr (std_pr p) ++ str ")" in (* For printing with Syntax and without the scope mechanism *) let _ = Esyntax.Ppprim.add ("positive_printer", (outside_printer true)) in let _ = Esyntax.Ppprim.add ("negative_printer", (outside_printer false)) in let _ = Esyntax.Ppprim.add ("positive_printer_inside", (inside_printer true))in let _ = Esyntax.Ppprim.add ("negative_printer_inside", (inside_printer false)) in () (**********************************************************************) (* Parsing positive via scopes *) (**********************************************************************) open Libnames open Rawterm let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) let fast_integer_module = make_dir ["Coq";"ZArith";"fast_integer"] (* TODO: temporary hack *) let make_path dir id = Libnames.encode_kn dir id let positive_path = make_path fast_integer_module (id_of_string "positive") let path_of_xI = ((positive_path,0),1) let path_of_xO = ((positive_path,0),2) let path_of_xH = ((positive_path,0),3) let glob_xI = ConstructRef path_of_xI let glob_xO = ConstructRef path_of_xO let glob_xH = ConstructRef path_of_xH let pos_of_bignat dloc x = let ref_xI = RRef (dloc, glob_xI) in let ref_xH = RRef (dloc, glob_xH) in let ref_xO = RRef (dloc, glob_xO) in let rec pos_of x = match div2_with_rest x with | (q,false) -> RApp (dloc, ref_xO,[pos_of q]) | (q,true) when is_nonzero q -> RApp (dloc,ref_xI,[pos_of q]) | (q,true) -> ref_xH in pos_of x let interp_positive dloc = function | POS n when is_nonzero n -> pos_of_bignat dloc n | _ -> user_err_loc (dloc, "interp_positive", str "Only strictly positive numbers in type \"positive\"!") let rec pat_pos_of_bignat dloc x name = match div2_with_rest x with | (q,false) -> PatCstr (dloc,path_of_xO,[pat_pos_of_bignat dloc q Anonymous],name) | (q,true) when is_nonzero q -> PatCstr (dloc,path_of_xI,[pat_pos_of_bignat dloc q Anonymous],name) | (q,true) -> PatCstr (dloc,path_of_xH,[],name) let pat_interp_positive dloc = function | POS n -> pat_pos_of_bignat dloc n | NEG n -> user_err_loc (dloc, "interp_positive", str "No negative number in type \"positive\"!") (**********************************************************************) (* Printing positive via scopes *) (**********************************************************************) let rec bignat_of_pos = function | RApp (_, RRef (_,b),[a]) when b = glob_xO -> mult_2(bignat_of_pos a) | RApp (_, RRef (_,b),[a]) when b = glob_xI -> add_1(mult_2(bignat_of_pos a)) | RRef (_, a) when a = glob_xH -> Bignat.one | _ -> raise Non_closed_number let uninterp_positive p = try Some (POS (bignat_of_pos p)) with Non_closed_number -> None (***********************************************************************) (* Declaring interpreters and uninterpreters for positive *) (***********************************************************************) let _ = Symbols.declare_numeral_interpreter "positive_scope" ["Coq";"ZArith";"fast_integer"] (interp_positive,Some pat_interp_positive) ([RRef (dummy_loc, glob_xI); RRef (dummy_loc, glob_xO); RRef (dummy_loc, glob_xH)], uninterp_positive, None) (**********************************************************************) (* Parsing Z via scopes *) (**********************************************************************) let z_path = make_path fast_integer_module (id_of_string "Z") let glob_z = IndRef (z_path,0) let path_of_ZERO = ((z_path,0),1) let path_of_POS = ((z_path,0),2) let path_of_NEG = ((z_path,0),3) let glob_ZERO = ConstructRef path_of_ZERO let glob_POS = ConstructRef path_of_POS let glob_NEG = ConstructRef path_of_NEG let z_of_posint dloc pos_or_neg n = if is_nonzero n then let sgn = if pos_or_neg then glob_POS else glob_NEG in RApp(dloc, RRef (dloc,sgn), [pos_of_bignat dloc n]) else RRef (dloc, glob_ZERO) let z_of_int dloc z = match z with | POS n -> z_of_posint dloc true n | NEG n -> z_of_posint dloc false n let pat_z_of_posint dloc pos_or_neg n name = if is_nonzero n then let sgn = if pos_or_neg then path_of_POS else path_of_NEG in PatCstr (dloc, sgn, [pat_pos_of_bignat dloc n Anonymous], name) else PatCstr (dloc, path_of_ZERO, [], name) let pat_z_of_int dloc n name = match n with | POS n -> pat_z_of_posint dloc true n name | NEG n -> pat_z_of_posint dloc false n name (**********************************************************************) (* Printing Z via scopes *) (**********************************************************************) let bigint_of_z = function | RApp (_, RRef (_,b),[a]) when b = glob_POS -> POS (bignat_of_pos a) | RApp (_, RRef (_,b),[a]) when b = glob_NEG -> NEG (bignat_of_pos a) | RRef (_, a) when a = glob_ZERO -> POS (Bignat.zero) | _ -> raise Non_closed_number let uninterp_z p = try Some (bigint_of_z p) with Non_closed_number -> None (***********************************************************************) (* Declaring interpreters and uninterpreters for Z *) let _ = Symbols.declare_numeral_interpreter "Z_scope" ["Coq";"ZArith";"fast_integer"] (z_of_int,Some pat_z_of_int) ([RRef (dummy_loc, glob_ZERO); RRef (dummy_loc, glob_POS); RRef (dummy_loc, glob_NEG)], uninterp_z, None) (***********************************************************************) (* Old ast Printers *) open Esyntax let _ = if !Options.v7 then let bignat_of_pos p = let ((xI,xO,xH),_) = get_z_sign_ast dummy_loc in let c1 = xO in let c2 = xI in let c3 = xH in let rec transl = function | Node (_,"APPLIST",[b; a]) when alpha_eq(b,c1) -> mult_2(transl a) | Node (_,"APPLIST",[b; a]) when alpha_eq(b,c2) -> add_1(mult_2(transl a)) | a when alpha_eq(a,c3) -> Bignat.one | _ -> raise Non_closed_number in transl p in let bignat_option_of_pos p = try Some (bignat_of_pos p) with Non_closed_number -> None in let z_printer posneg p = match bignat_option_of_pos p with | Some n -> if posneg then Some (str (Bignat.to_string n)) else Some (str "-" ++ str (Bignat.to_string n)) | None -> None in let z_printer_ZERO _ = Some (int 0) in (* Declare pretty-printers for integers *) let _ = declare_primitive_printer "z_printer_POS" "Z_scope" (z_printer true) in let _ = declare_primitive_printer "z_printer_NEG" "Z_scope" (z_printer false) in let _ = declare_primitive_printer "z_printer_ZERO" "Z_scope" z_printer_ZERO in ()