(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* anomaly ("Coqlib: cannot find "^(string_of_qualid (make_qualid dir id))) let constant dir s = Declare.constr_of_reference Evd.empty (Global.env()) (reference dir s) type coq_sigma_data = { proj1 : constr; proj2 : constr; elim : constr; intro : constr; typ : constr } type 'a delayed = unit -> 'a let build_sigma_set () = { proj1 = constant "Specif" "projS1"; proj2 = constant "Specif" "projS2"; elim = constant "Specif" "sigS_rec"; intro = constant "Specif" "existS"; typ = constant "Specif" "sigS" } let build_sigma_type () = { proj1 = constant "Logic_Type" "projT1"; proj2 = constant "Logic_Type" "projT2"; elim = constant "Logic_Type" "sigT_rec"; intro = constant "Logic_Type" "existT"; typ = constant "Logic_Type" "sigT" } (* Equalities *) type coq_leibniz_eq_data = { eq : constr delayed; ind : constr delayed; rrec : constr delayed option; rect : constr delayed option; congr: constr delayed; sym : constr delayed } let constant dir id = lazy (constant dir id) (* Equality on Set *) let coq_eq_eq = constant "Logic" "eq" let coq_eq_ind = constant "Logic" "eq_ind" let coq_eq_rec = constant "Logic" "eq_rec" let coq_eq_rect = constant "Logic" "eq_rect" let coq_eq_congr = constant "Logic" "f_equal" let coq_eq_sym = constant "Logic" "sym_eq" let coq_f_equal2 = constant "Logic" "f_equal2" let build_coq_eq_data = { eq = (fun () -> Lazy.force coq_eq_eq); ind = (fun () -> Lazy.force coq_eq_ind); rrec = Some (fun () -> Lazy.force coq_eq_rec); rect = Some (fun () -> Lazy.force coq_eq_rect); congr = (fun () -> Lazy.force coq_eq_congr); sym = (fun () -> Lazy.force coq_eq_sym) } let build_coq_eq = build_coq_eq_data.eq let build_coq_f_equal2 () = Lazy.force coq_f_equal2 (* Specif *) let coq_sumbool = constant "Specif" "sumbool" let build_coq_sumbool () = Lazy.force coq_sumbool (* Equality on Type *) let coq_eqT_eq = constant "Logic_Type" "eqT" let coq_eqT_ind = constant "Logic_Type" "eqT_ind" let coq_eqT_congr =constant "Logic_Type" "congr_eqT" let coq_eqT_sym = constant "Logic_Type" "sym_eqT" let build_coq_eqT_data = { eq = (fun () -> Lazy.force coq_eqT_eq); ind = (fun () -> Lazy.force coq_eqT_ind); rrec = None; rect = None; congr = (fun () -> Lazy.force coq_eqT_congr); sym = (fun () -> Lazy.force coq_eqT_sym) } let build_coq_eqT = build_coq_eqT_data.eq let build_coq_sym_eqT = build_coq_eqT_data.sym (* Equality on Type as a Type *) let coq_idT_eq = constant "Logic_Type" "identityT" let coq_idT_ind = constant "Logic_Type" "identityT_ind" let coq_idT_rec = constant "Logic_Type" "identityT_rec" let coq_idT_rect = constant "Logic_Type" "identityT_rect" let coq_idT_congr = constant "Logic_Type" "congr_idT" let coq_idT_sym = constant "Logic_Type" "sym_idT" let build_coq_idT_data = { eq = (fun () -> Lazy.force coq_idT_eq); ind = (fun () -> Lazy.force coq_idT_ind); rrec = Some (fun () -> Lazy.force coq_idT_rec); rect = Some (fun () -> Lazy.force coq_idT_rect); congr = (fun () -> Lazy.force coq_idT_congr); sym = (fun () -> Lazy.force coq_idT_sym) } (* Empty Type *) let coq_EmptyT = constant "Logic_Type" "EmptyT" (* Unit Type and its unique inhabitant *) let coq_UnitT = constant "Logic_Type" "UnitT" let coq_IT = constant "Logic_Type" "IT" (* The False proposition *) let coq_False = constant "Logic" "False" (* The True proposition and its unique proof *) let coq_True = constant "Logic" "True" let coq_I = constant "Logic" "I" (* Connectives *) let coq_not = constant "Logic" "not" let coq_and = constant "Logic" "and" let coq_or = constant "Logic" "or" let coq_ex = constant "Logic" "ex" (* Runtime part *) let build_coq_EmptyT () = Lazy.force coq_EmptyT let build_coq_UnitT () = Lazy.force coq_UnitT let build_coq_IT () = Lazy.force coq_IT let build_coq_True () = Lazy.force coq_True let build_coq_I () = Lazy.force coq_I let build_coq_False () = Lazy.force coq_False let build_coq_not () = Lazy.force coq_not let build_coq_and () = Lazy.force coq_and let build_coq_or () = Lazy.force coq_or let build_coq_ex () = Lazy.force coq_ex (****************************************************************************) (* Patterns *) (* This needs to have interp_constrpattern available ... let parse_astconstr s = try Pcoq.parse_string Pcoq.Constr.constr_eoi s with Stdpp.Exc_located (_ , (Stream.Failure | Stream.Error _)) -> error "Syntax error : not a construction" let parse_pattern s = Astterm.interp_constrpattern Evd.empty (Global.env()) (parse_astconstr s) let coq_eq_pattern = lazy (snd (parse_pattern "(Coq.Init.Logic.eq ?1 ?2 ?3)")) let coq_eqT_pattern = lazy (snd (parse_pattern "(Coq.Init.Logic_Type.eqT ?1 ?2 ?3)")) let coq_idT_pattern = lazy (snd (parse_pattern "(Coq.Init.Logic_Type.identityT ?1 ?2 ?3)")) let coq_existS_pattern = lazy (snd (parse_pattern "(Coq.Init.Specif.existS ?1 ?2 ?3 ?4)")) let coq_existT_pattern = lazy (snd (parse_pattern "(Coq.Init.Logic_Type.existT ?1 ?2 ?3 ?4)")) let coq_not_pattern = lazy (snd (parse_pattern "(Coq.Init.Logic.not ?)")) let coq_imp_False_pattern = lazy (snd (parse_pattern "? -> Coq.Init.Logic.False")) let coq_imp_False_pattern = lazy (snd (parse_pattern "? -> Coq.Init.Logic.False")) let coq_eqdec_partial_pattern lazy (snd (parse_pattern "(sumbool (eq ?1 ?2 ?3) ?4)")) let coq_eqdec_pattern lazy (snd (parse_pattern "(x,y:?1){x=y}+{~(x=y)}")) *) (* The following is less readable but does not depend on parsing *) let coq_eq_ref = lazy (reference "Logic" "eq") let coq_eqT_ref = lazy (reference "Logic_Type" "eqT") let coq_idT_ref = lazy (reference "Logic_Type" "identityT") let coq_existS_ref = lazy (reference "Specif" "existS") let coq_existT_ref = lazy (reference "Logic_Type" "existT") let coq_not_ref = lazy (reference "Logic" "not") let coq_False_ref = lazy (reference "Logic" "False") let coq_sumbool_ref = lazy (reference "Specif" "sumbool") let coq_sig_ref = lazy (reference "Specif" "sig") (* Pattern "(sig ?1 ?2)" *) let coq_sig_pattern = lazy (PApp (PRef (Lazy.force coq_sig_ref), [| PMeta (Some 1); PMeta (Some 2) |])) (* Patterns "(eq ?1 ?2 ?3)", "(eqT ?1 ?2 ?3)" and "(idT ?1 ?2 ?3)" *) let coq_eq_pattern_gen eq = lazy (PApp(PRef (Lazy.force eq), Array.init 3 (fun i -> PMeta (Some (i+1))))) let coq_eq_pattern = coq_eq_pattern_gen coq_eq_ref let coq_eqT_pattern = coq_eq_pattern_gen coq_eqT_ref let coq_idT_pattern = coq_eq_pattern_gen coq_idT_ref (* Patterns "(existS ?1 ?2 ?3 ?4)" and "(existT ?1 ?2 ?3 ?4)" *) let coq_ex_pattern_gen ex = lazy (PApp(PRef (Lazy.force ex), Array.init 4 (fun i -> PMeta (Some (i+1))))) let coq_existS_pattern = coq_ex_pattern_gen coq_existS_ref let coq_existT_pattern = coq_ex_pattern_gen coq_existT_ref (* Patterns "~ ?", "? -> False" and "(?1 -> ?2)" *) let coq_not_pattern = lazy(PApp(PRef (Lazy.force coq_not_ref), [|PMeta None|])) let imp a b = PProd (Anonymous, a, b) let coq_imp_False_pattern = lazy (imp (PMeta None) (PRef (Lazy.force coq_False_ref))) let coq_arrow_pattern = lazy (imp (PMeta (Some 1)) (PMeta (Some 2))) (* Pattern "(sumbool (eq ?1 ?2 ?3) ?4)" *) let coq_eqdec_partial_pattern = lazy (PApp (PRef (Lazy.force coq_sumbool_ref), [| Lazy.force coq_eq_pattern; PMeta (Some 4) |])) (* The expected form of the goal for the tactic Decide Equality *) (* Pattern "(x,y:?1){x=y}+{~(x=y)}" *) (* i.e. "(x,y:?1)(sumbool (eq ?1 x y) ~(eq ?1 x y))" *) let x = Name (id_of_string "x") let y = Name (id_of_string "y") let coq_eqdec_pattern = lazy (PProd (x, PMeta (Some 1), PProd (y, PMeta (Some 1), PApp (PRef (Lazy.force coq_sumbool_ref), [| PApp (PRef (Lazy.force coq_eq_ref), [| PMeta (Some 1); PRel 2; PRel 1 |]); PApp (PRef (Lazy.force coq_not_ref), [|PApp (PRef (Lazy.force coq_eq_ref), [| PMeta (Some 1); PRel 2; PRel 1 |])|]) |])))) (* "(A : ?)(x:A)(? A x x)" and "(x : ?)(? x x)" *) let name_A = Name (id_of_string "A") let coq_refl_rel1_pattern = lazy (PProd (name_A, PMeta None, PProd (x, PRel 1, PApp (PMeta None, [|PRel 2; PRel 1; PRel 1|])))) let coq_refl_rel2_pattern = lazy (PProd (x, PMeta None, PApp (PMeta None, [|PRel 1; PRel 1|]))) let build_coq_eq_pattern () = Lazy.force coq_eq_pattern let build_coq_eqT_pattern () = Lazy.force coq_eqT_pattern let build_coq_idT_pattern () = Lazy.force coq_idT_pattern let build_coq_existS_pattern () = Lazy.force coq_existS_pattern let build_coq_existT_pattern () = Lazy.force coq_existT_pattern let build_coq_not_pattern () = Lazy.force coq_not_pattern let build_coq_imp_False_pattern () = Lazy.force coq_imp_False_pattern let build_coq_eqdec_partial_pattern () = Lazy.force coq_eqdec_partial_pattern let build_coq_eqdec_pattern () = Lazy.force coq_eqdec_pattern let build_coq_arrow_pattern () = Lazy.force coq_arrow_pattern let build_coq_refl_rel1_pattern () = Lazy.force coq_refl_rel1_pattern let build_coq_refl_rel2_pattern () = Lazy.force coq_refl_rel2_pattern let build_coq_sig_pattern () = Lazy.force coq_sig_pattern