(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Level.pr l (** Local universe names of polymorphic references *) type universe_binders = (Id.t * Univ.universe_level) list let universe_binders_table = Summary.ref Refmap.empty ~name:"universe binders" let universe_binders_of_global ref = try let l = Refmap.find ref !universe_binders_table in l with Not_found -> [] let register_universe_binders ref l = universe_binders_table := Refmap.add ref l !universe_binders_table (* To disallow minimization to Set *) let set_minimization = ref true let is_set_minimization () = !set_minimization type universe_constraint_type = ULe | UEq | ULub type universe_constraint = universe * universe_constraint_type * universe module Constraints = struct module S = Set.Make( struct type t = universe_constraint let compare_type c c' = match c, c' with | ULe, ULe -> 0 | ULe, _ -> -1 | _, ULe -> 1 | UEq, UEq -> 0 | UEq, _ -> -1 | ULub, ULub -> 0 | ULub, _ -> 1 let compare (u,c,v) (u',c',v') = let i = compare_type c c' in if Int.equal i 0 then let i' = Universe.compare u u' in if Int.equal i' 0 then Universe.compare v v' else if c != ULe && Universe.compare u v' = 0 && Universe.compare v u' = 0 then 0 else i' else i end) include S let add (l,d,r as cst) s = if Universe.equal l r then s else add cst s let tr_dir = function | ULe -> Le | UEq -> Eq | ULub -> Eq let op_str = function ULe -> " <= " | UEq -> " = " | ULub -> " /\\ " let pr c = fold (fun (u1,op,u2) pp_std -> pp_std ++ Universe.pr u1 ++ str (op_str op) ++ Universe.pr u2 ++ fnl ()) c (str "") let equal x y = x == y || equal x y end type universe_constraints = Constraints.t type 'a constraint_accumulator = universe_constraints -> 'a -> 'a option type 'a universe_constrained = 'a * universe_constraints type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints let enforce_eq_instances_univs strict x y c = let d = if strict then ULub else UEq in let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then Errors.anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with" ++ Pp.str " instances of different lengths"); CArray.fold_right2 (fun x y -> Constraints.add (Universe.make x, d, Universe.make y)) ax ay c let subst_univs_universe_constraint fn (u,d,v) = let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in if Universe.equal u' v' then None else Some (u',d,v') let subst_univs_universe_constraints subst csts = Constraints.fold (fun c -> Option.fold_right Constraints.add (subst_univs_universe_constraint subst c)) csts Constraints.empty let to_constraints g s = let tr (x,d,y) acc = let add l d l' acc = Constraint.add (l,Constraints.tr_dir d,l') acc in match Universe.level x, d, Universe.level y with | Some l, (ULe | UEq | ULub), Some l' -> add l d l' acc | _, ULe, Some l' -> enforce_leq x y acc | _, ULub, _ -> acc | _, d, _ -> let f = if d == ULe then UGraph.check_leq else UGraph.check_eq in if f g x y then acc else raise (Invalid_argument "to_constraints: non-trivial algebraic constraint between universes") in Constraints.fold tr s Constraint.empty let eq_constr_univs_infer univs fold m n accu = if m == n then Some accu else let cstrs = ref accu in let eq_universes strict = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (u1, UEq, u2)) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let rec eq_constr' m n = m == n || Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in let res = Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in if res then Some !cstrs else None (** Variant of [eq_constr_univs_infer] taking kind-of-term functions, to expose subterms of [m] and [n], arguments. *) let eq_constr_univs_infer_with kind1 kind2 univs fold m n accu = (* spiwack: duplicates the code of [eq_constr_univs_infer] because I haven't find a way to factor the code without destroying pointer-equality optimisations in [eq_constr_univs_infer]. Pointer equality is not sufficient to ensure equality up to [kind1,kind2], because [kind1] and [kind2] may be different, typically evaluating [m] and [n] in different evar maps. *) let cstrs = ref accu in let eq_universes strict = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (u1, UEq, u2)) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let rec eq_constr' m n = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n in let res = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' m n in if res then Some !cstrs else None let leq_constr_univs_infer univs fold m n accu = if m == n then Some accu else let cstrs = ref accu in let eq_universes strict l l' = UGraph.check_eq_instances univs l l' in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (u1, UEq, u2)) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let leq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (u1, ULe, u2)) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let rec eq_constr' m n = m == n || Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in let rec compare_leq m n = Constr.compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' m n and leq_constr' m n = m == n || compare_leq m n in let res = compare_leq m n in if res then Some !cstrs else None let eq_constr_universes m n = if m == n then true, Constraints.empty else let cstrs = ref Constraints.empty in let eq_universes strict l l' = cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else (cstrs := Constraints.add (Sorts.univ_of_sort s1, UEq, Sorts.univ_of_sort s2) !cstrs; true) in let rec eq_constr' m n = m == n || Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in let res = Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in res, !cstrs let leq_constr_universes m n = if m == n then true, Constraints.empty else let cstrs = ref Constraints.empty in let eq_universes strict l l' = cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else (cstrs := Constraints.add (Sorts.univ_of_sort s1,UEq,Sorts.univ_of_sort s2) !cstrs; true) in let leq_sorts s1 s2 = if Sorts.equal s1 s2 then true else (cstrs := Constraints.add (Sorts.univ_of_sort s1,ULe,Sorts.univ_of_sort s2) !cstrs; true) in let rec eq_constr' m n = m == n || Constr.compare_head_gen eq_universes eq_sorts eq_constr' m n in let rec compare_leq m n = Constr.compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' m n and leq_constr' m n = m == n || compare_leq m n in let res = compare_leq m n in res, !cstrs let compare_head_gen_proj env equ eqs eqc' m n = match kind_of_term m, kind_of_term n with | Proj (p, c), App (f, args) | App (f, args), Proj (p, c) -> (match kind_of_term f with | Const (p', u) when eq_constant (Projection.constant p) p' -> let pb = Environ.lookup_projection p env in let npars = pb.Declarations.proj_npars in if Array.length args == npars + 1 then eqc' c args.(npars) else false | _ -> false) | _ -> Constr.compare_head_gen equ eqs eqc' m n let eq_constr_universes_proj env m n = if m == n then true, Constraints.empty else let cstrs = ref Constraints.empty in let eq_universes strict l l' = cstrs := enforce_eq_instances_univs strict l l' !cstrs; true in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else (cstrs := Constraints.add (Sorts.univ_of_sort s1, UEq, Sorts.univ_of_sort s2) !cstrs; true) in let rec eq_constr' m n = m == n || compare_head_gen_proj env eq_universes eq_sorts eq_constr' m n in let res = eq_constr' m n in res, !cstrs (* Generator of levels *) let new_univ_level, set_remote_new_univ_level = RemoteCounter.new_counter ~name:"Universes" 0 ~incr:((+) 1) ~build:(fun n -> Univ.Level.make (Global.current_dirpath ()) n) let new_univ_level _ = new_univ_level () (* Univ.Level.make db (new_univ_level ()) *) let fresh_level () = new_univ_level (Global.current_dirpath ()) (* TODO: remove *) let new_univ dp = Univ.Universe.make (new_univ_level dp) let new_Type dp = mkType (new_univ dp) let new_Type_sort dp = Type (new_univ dp) let fresh_universe_instance ctx = Instance.subst_fn (fun _ -> new_univ_level (Global.current_dirpath ())) (UContext.instance ctx) let fresh_instance_from_context ctx = let inst = fresh_universe_instance ctx in let constraints = instantiate_univ_constraints inst ctx in inst, constraints let fresh_instance ctx = let ctx' = ref LSet.empty in let inst = Instance.subst_fn (fun v -> let u = new_univ_level (Global.current_dirpath ()) in ctx' := LSet.add u !ctx'; u) (UContext.instance ctx) in !ctx', inst let existing_instance ctx inst = let () = let a1 = Instance.to_array inst and a2 = Instance.to_array (UContext.instance ctx) in let len1 = Array.length a1 and len2 = Array.length a2 in if not (len1 == len2) then Errors.errorlabstrm "Universes" (str "Polymorphic constant expected " ++ int len2 ++ str" levels but was given " ++ int len1) else () in LSet.empty, inst let fresh_instance_from ctx inst = let ctx', inst = match inst with | Some inst -> existing_instance ctx inst | None -> fresh_instance ctx in let constraints = instantiate_univ_constraints inst ctx in inst, (ctx', constraints) let unsafe_instance_from ctx = (Univ.UContext.instance ctx, ctx) (** Fresh universe polymorphic construction *) let fresh_constant_instance env c inst = let cb = lookup_constant c env in if cb.Declarations.const_polymorphic then let inst, ctx = fresh_instance_from (Declareops.universes_of_constant (Environ.opaque_tables env) cb) inst in ((c, inst), ctx) else ((c,Instance.empty), ContextSet.empty) let fresh_inductive_instance env ind inst = let mib, mip = Inductive.lookup_mind_specif env ind in if mib.Declarations.mind_polymorphic then let inst, ctx = fresh_instance_from mib.Declarations.mind_universes inst in ((ind,inst), ctx) else ((ind,Instance.empty), ContextSet.empty) let fresh_constructor_instance env (ind,i) inst = let mib, mip = Inductive.lookup_mind_specif env ind in if mib.Declarations.mind_polymorphic then let inst, ctx = fresh_instance_from mib.Declarations.mind_universes inst in (((ind,i),inst), ctx) else (((ind,i),Instance.empty), ContextSet.empty) let unsafe_constant_instance env c = let cb = lookup_constant c env in if cb.Declarations.const_polymorphic then let inst, ctx = unsafe_instance_from (Declareops.universes_of_constant (Environ.opaque_tables env) cb) in ((c, inst), ctx) else ((c,Instance.empty), UContext.empty) let unsafe_inductive_instance env ind = let mib, mip = Inductive.lookup_mind_specif env ind in if mib.Declarations.mind_polymorphic then let inst, ctx = unsafe_instance_from mib.Declarations.mind_universes in ((ind,inst), ctx) else ((ind,Instance.empty), UContext.empty) let unsafe_constructor_instance env (ind,i) = let mib, mip = Inductive.lookup_mind_specif env ind in if mib.Declarations.mind_polymorphic then let inst, ctx = unsafe_instance_from mib.Declarations.mind_universes in (((ind,i),inst), ctx) else (((ind,i),Instance.empty), UContext.empty) open Globnames let fresh_global_instance ?names env gr = match gr with | VarRef id -> mkVar id, ContextSet.empty | ConstRef sp -> let c, ctx = fresh_constant_instance env sp names in mkConstU c, ctx | ConstructRef sp -> let c, ctx = fresh_constructor_instance env sp names in mkConstructU c, ctx | IndRef sp -> let c, ctx = fresh_inductive_instance env sp names in mkIndU c, ctx let fresh_constant_instance env sp = fresh_constant_instance env sp None let fresh_inductive_instance env sp = fresh_inductive_instance env sp None let fresh_constructor_instance env sp = fresh_constructor_instance env sp None let unsafe_global_instance env gr = match gr with | VarRef id -> mkVar id, UContext.empty | ConstRef sp -> let c, ctx = unsafe_constant_instance env sp in mkConstU c, ctx | ConstructRef sp -> let c, ctx = unsafe_constructor_instance env sp in mkConstructU c, ctx | IndRef sp -> let c, ctx = unsafe_inductive_instance env sp in mkIndU c, ctx let constr_of_global gr = let c, ctx = fresh_global_instance (Global.env ()) gr in if not (Univ.ContextSet.is_empty ctx) then if Univ.LSet.is_empty (Univ.ContextSet.levels ctx) then (* Should be an error as we might forget constraints, allow for now to make firstorder work with "using" clauses *) c else raise (Invalid_argument ("constr_of_global: globalization of polymorphic reference " ^ Pp.string_of_ppcmds (Nametab.pr_global_env Id.Set.empty gr) ^ " would forget universes.")) else c let constr_of_reference = constr_of_global let unsafe_constr_of_global gr = unsafe_global_instance (Global.env ()) gr let constr_of_global_univ (gr,u) = match gr with | VarRef id -> mkVar id | ConstRef sp -> mkConstU (sp,u) | ConstructRef sp -> mkConstructU (sp,u) | IndRef sp -> mkIndU (sp,u) let fresh_global_or_constr_instance env = function | IsConstr c -> c, ContextSet.empty | IsGlobal gr -> fresh_global_instance env gr let global_of_constr c = match kind_of_term c with | Const (c, u) -> ConstRef c, u | Ind (i, u) -> IndRef i, u | Construct (c, u) -> ConstructRef c, u | Var id -> VarRef id, Instance.empty | _ -> raise Not_found let global_app_of_constr c = match kind_of_term c with | Const (c, u) -> (ConstRef c, u), None | Ind (i, u) -> (IndRef i, u), None | Construct (c, u) -> (ConstructRef c, u), None | Var id -> (VarRef id, Instance.empty), None | Proj (p, c) -> (ConstRef (Projection.constant p), Instance.empty), Some c | _ -> raise Not_found open Declarations let type_of_reference env r = match r with | VarRef id -> Environ.named_type id env, ContextSet.empty | ConstRef c -> let cb = Environ.lookup_constant c env in let ty = Typeops.type_of_constant_type env cb.const_type in if cb.const_polymorphic then let inst, ctx = fresh_instance_from (Declareops.universes_of_constant (Environ.opaque_tables env) cb) None in Vars.subst_instance_constr inst ty, ctx else ty, ContextSet.empty | IndRef ind -> let (mib, oib as specif) = Inductive.lookup_mind_specif env ind in if mib.mind_polymorphic then let inst, ctx = fresh_instance_from mib.mind_universes None in let ty = Inductive.type_of_inductive env (specif, inst) in ty, ctx else let ty = Inductive.type_of_inductive env (specif, Univ.Instance.empty) in ty, ContextSet.empty | ConstructRef cstr -> let (mib,oib as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in if mib.mind_polymorphic then let inst, ctx = fresh_instance_from mib.mind_universes None in Inductive.type_of_constructor (cstr,inst) specif, ctx else Inductive.type_of_constructor (cstr,Instance.empty) specif, ContextSet.empty let type_of_global t = type_of_reference (Global.env ()) t let unsafe_type_of_reference env r = match r with | VarRef id -> Environ.named_type id env | ConstRef c -> let cb = Environ.lookup_constant c env in Typeops.type_of_constant_type env cb.const_type | IndRef ind -> let (mib, oib as specif) = Inductive.lookup_mind_specif env ind in let (_, inst), _ = unsafe_inductive_instance env ind in Inductive.type_of_inductive env (specif, inst) | ConstructRef (ind, _ as cstr) -> let (mib,oib as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in let (_, inst), _ = unsafe_inductive_instance env ind in Inductive.type_of_constructor (cstr,inst) specif let unsafe_type_of_global t = unsafe_type_of_reference (Global.env ()) t let fresh_sort_in_family env = function | InProp -> prop_sort, ContextSet.empty | InSet -> set_sort, ContextSet.empty | InType -> let u = fresh_level () in Type (Univ.Universe.make u), ContextSet.singleton u let new_sort_in_family sf = fst (fresh_sort_in_family (Global.env ()) sf) let extend_context (a, ctx) (ctx') = (a, ContextSet.union ctx ctx') let new_global_univ () = let u = fresh_level () in (Univ.Universe.make u, ContextSet.singleton u) (** Simplification *) module LevelUnionFind = Unionfind.Make (Univ.LSet) (Univ.LMap) let add_list_map u t map = try let l = LMap.find u map in LMap.update u (t :: l) map with Not_found -> LMap.add u [t] map module UF = LevelUnionFind (** Precondition: flexible <= ctx *) let choose_canonical ctx flexible algs s = let global = LSet.diff s ctx in let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in (** If there is a global universe in the set, choose it *) if not (LSet.is_empty global) then let canon = LSet.choose global in canon, (LSet.remove canon global, rigid, flexible) else (** No global in the equivalence class, choose a rigid one *) if not (LSet.is_empty rigid) then let canon = LSet.choose rigid in canon, (global, LSet.remove canon rigid, flexible) else (** There are only flexible universes in the equivalence class, choose a non-algebraic. *) let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in if not (LSet.is_empty nonalgs) then let canon = LSet.choose nonalgs in canon, (global, rigid, LSet.remove canon flexible) else let canon = LSet.choose algs in canon, (global, rigid, LSet.remove canon flexible) let subst_univs_fn_puniverses lsubst (c, u as cu) = let u' = Instance.subst_fn lsubst u in if u' == u then cu else (c, u') let nf_evars_and_universes_opt_subst f subst = let subst = fun l -> match LMap.find l subst with None -> raise Not_found | Some l' -> l' in let lsubst = Univ.level_subst_of subst in let rec aux c = match kind_of_term c with | Evar (evk, args) -> let args = Array.map aux args in (match try f (evk, args) with Not_found -> None with | None -> c | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstructU pu' | Sort (Type u) -> let u' = Univ.subst_univs_universe subst u in if u' == u then c else mkSort (sort_of_univ u') | _ -> map_constr aux c in aux let fresh_universe_context_set_instance ctx = if ContextSet.is_empty ctx then LMap.empty, ctx else let (univs, cst) = ContextSet.levels ctx, ContextSet.constraints ctx in let univs',subst = LSet.fold (fun u (univs',subst) -> let u' = fresh_level () in (LSet.add u' univs', LMap.add u u' subst)) univs (LSet.empty, LMap.empty) in let cst' = subst_univs_level_constraints subst cst in subst, (univs', cst') let normalize_univ_variable ~find ~update = let rec aux cur = let b = find cur in let b' = subst_univs_universe aux b in if Universe.equal b' b then b else update cur b' in aux let normalize_univ_variable_opt_subst ectx = let find l = match Univ.LMap.find l !ectx with | Some b -> b | None -> raise Not_found in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try ectx := Univ.LMap.add l (Some b) !ectx; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_univ_variable_subst subst = let find l = Univ.LMap.find l !subst in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try subst := Univ.LMap.update l b !subst; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_universe_subst subst = let normlevel = normalize_univ_variable_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let ectx = ref ctx in let normalize = normalize_univ_variable_opt_subst ectx in let () = Univ.LMap.iter (fun u v -> if Option.is_empty v then () else try ignore(normalize u) with Not_found -> assert(false)) ctx in !ectx type universe_opt_subst = universe option universe_map let make_opt_subst s = fun x -> (match Univ.LMap.find x s with | Some u -> u | None -> raise Not_found) let subst_opt_univs_constr s = let f = make_opt_subst s in Vars.subst_univs_fn_constr f let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let undef, def, subst = Univ.LMap.fold (fun u v (undef, def, subst) -> match v with | None -> (Univ.LSet.add u undef, def, subst) | Some b -> (undef, Univ.LSet.add u def, Univ.LMap.add u b subst)) ctx (Univ.LSet.empty, Univ.LSet.empty, Univ.LMap.empty) in ctx, undef, def, subst let pr_universe_body = function | None -> mt () | Some v -> str" := " ++ Univ.Universe.pr v let pr_universe_opt_subst = Univ.LMap.pr pr_universe_body exception Found of Level.t let find_inst insts v = try LMap.iter (fun k (enf,alg,v') -> if not alg && enf && Universe.equal v' v then raise (Found k)) insts; raise Not_found with Found l -> l let compute_lbound left = (** The universe variable was not fixed yet. Compute its level using its lower bound. *) let sup l lbound = match lbound with | None -> Some l | Some l' -> Some (Universe.sup l l') in List.fold_left (fun lbound (d, l) -> if d == Le (* l <= ?u *) then sup l lbound else (* l < ?u *) (assert (d == Lt); if not (Universe.level l == None) then sup (Universe.super l) lbound else None)) None left let instantiate_with_lbound u lbound alg enforce (ctx, us, algs, insts, cstrs) = if enforce then let inst = Universe.make u in let cstrs' = enforce_leq lbound inst cstrs in (ctx, us, LSet.remove u algs, LMap.add u (enforce,alg,lbound) insts, cstrs'), (enforce, alg, inst) else (* Actually instantiate *) (Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs, LMap.add u (enforce,alg,lbound) insts, cstrs), (enforce, alg, lbound) type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t let pr_constraints_map cmap = LMap.fold (fun l cstrs acc -> Level.pr l ++ str " => " ++ prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++ fnl () ++ acc) cmap (mt ()) let remove_alg l (ctx, us, algs, insts, cstrs) = (ctx, us, LSet.remove l algs, insts, cstrs) let minimize_univ_variables ctx us algs left right cstrs = let left, lbounds = Univ.LMap.fold (fun r lower (left, lbounds as acc) -> if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc else (* Fixed universe, just compute its glb for sharing *) let lbounds' = match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with | None -> lbounds | Some lbound -> LMap.add r (true, false, lbound) lbounds in (Univ.LMap.remove r left, lbounds')) left (left, Univ.LMap.empty) in let rec instance (ctx', us, algs, insts, cstrs as acc) u = let acc, left = try let l = LMap.find u left in List.fold_left (fun (acc, left') (d, l) -> let acc', (enf,alg,l') = aux acc l in let l' = if enf then Universe.make l else l' in acc', (d, l') :: left') (acc, []) l with Not_found -> acc, [] and right = try Some (LMap.find u right) with Not_found -> None in let instantiate_lbound lbound = let alg = LSet.mem u algs in if alg then (* u is algebraic: we instantiate it with it's lower bound, if any, or enforce the constraints if it is bounded from the top. *) instantiate_with_lbound u lbound true false acc else (* u is non algebraic *) match Universe.level lbound with | Some l -> (* The lowerbound is directly a level *) (* u is not algebraic but has no upper bounds, we instantiate it with its lower bound if it is a different level, otherwise we keep it. *) if not (Level.equal l u) then (* Should check that u does not have upper constraints that are not already in right *) let acc' = remove_alg l acc in instantiate_with_lbound u lbound false false acc' else acc, (true, false, lbound) | None -> try (* if right <> None then raise Not_found; *) (* Another universe represents the same lower bound, we can share them with no harm. *) let can = find_inst insts lbound in instantiate_with_lbound u (Universe.make can) false false acc with Not_found -> (* We set u as the canonical universe representing lbound *) instantiate_with_lbound u lbound false true acc in let acc' acc = match right with | None -> acc | Some cstrs -> let dangling = List.filter (fun (d, r) -> not (LMap.mem r us)) cstrs in if List.is_empty dangling then acc else let ((ctx', us, algs, insts, cstrs), (enf,_,inst as b)) = acc in let cstrs' = List.fold_left (fun cstrs (d, r) -> if d == Univ.Le then enforce_leq inst (Universe.make r) cstrs else try let lev = Option.get (Universe.level inst) in Constraint.add (lev, d, r) cstrs with Option.IsNone -> failwith "") cstrs dangling in (ctx', us, algs, insts, cstrs'), b in if not (LSet.mem u ctx) then acc' (acc, (true, false, Universe.make u)) else let lbound = compute_lbound left in match lbound with | None -> (* Nothing to do *) acc' (acc, (true, false, Universe.make u)) | Some lbound -> try acc' (instantiate_lbound lbound) with Failure _ -> acc' (acc, (true, false, Universe.make u)) and aux (ctx', us, algs, seen, cstrs as acc) u = try acc, LMap.find u seen with Not_found -> instance acc u in LMap.fold (fun u v (ctx', us, algs, seen, cstrs as acc) -> if v == None then fst (aux acc u) else LSet.remove u ctx', us, LSet.remove u algs, seen, cstrs) us (ctx, us, algs, lbounds, cstrs) let normalize_context_set ctx us algs = let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in let uf = UF.create () in (** Keep the Prop/Set <= i constraints separate for minimization *) let smallles, csts = Constraint.fold (fun (l,d,r as cstr) (smallles, noneqs) -> if d == Le then if Univ.Level.is_small l then if is_set_minimization () && LSet.mem r ctx then (Constraint.add cstr smallles, noneqs) else (smallles, noneqs) else if Level.is_small r then if Level.is_prop r then raise (Univ.UniverseInconsistency (Le,Universe.make l,Universe.make r,None)) else (smallles, Constraint.add (l,Eq,r) noneqs) else (smallles, Constraint.add cstr noneqs) else (smallles, Constraint.add cstr noneqs)) csts (Constraint.empty, Constraint.empty) in let csts = (* We first put constraints in a normal-form: all self-loops are collapsed to equalities. *) let g = Univ.LSet.fold (fun v g -> UGraph.add_universe v false g) ctx UGraph.empty_universes in let g = Univ.Constraint.fold (fun (l, d, r) g -> let g = if not (Level.is_small l || LSet.mem l ctx) then try UGraph.add_universe l false g with UGraph.AlreadyDeclared -> g else g in let g = if not (Level.is_small r || LSet.mem r ctx) then try UGraph.add_universe r false g with UGraph.AlreadyDeclared -> g else g in g) csts g in let g = Univ.Constraint.fold UGraph.enforce_constraint csts g in UGraph.constraints_of_universes g in let noneqs = Constraint.fold (fun (l,d,r as cstr) noneqs -> if d == Eq then (UF.union l r uf; noneqs) else (* We ignore the trivial Prop/Set <= i constraints. *) if d == Le && Univ.Level.is_small l then noneqs else if Univ.Level.is_prop l && d == Lt && Univ.Level.is_set r then noneqs else Constraint.add cstr noneqs) csts Constraint.empty in let noneqs = Constraint.union noneqs smallles in let partition = UF.partition uf in let flex x = LMap.mem x us in let ctx, subst, eqs = List.fold_left (fun (ctx, subst, cstrs) s -> let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in (* Add equalities for globals which can't be merged anymore. *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) global cstrs in let subst = LSet.fold (fun f -> LMap.add f canon) rigid subst in let subst = LSet.fold (fun f -> LMap.add f canon) flexible subst in (LSet.diff (LSet.diff ctx rigid) flexible, subst, cstrs)) (ctx, LMap.empty, Constraint.empty) partition in (* Noneqs is now in canonical form w.r.t. equality constraints, and contains only inequality constraints. *) let noneqs = subst_univs_level_constraints subst noneqs in let us = LMap.fold (fun u v acc -> LMap.add u (Some (Universe.make v)) acc) subst us in (* Compute the left and right set of flexible variables, constraints mentionning other variables remain in noneqs. *) let noneqs, ucstrsl, ucstrsr = Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) -> let lus = LMap.mem l us and rus = LMap.mem r us in let ucstrsl' = if lus then add_list_map l (d, r) ucstrsl else ucstrsl and ucstrsr' = add_list_map r (d, l) ucstrsr in let noneqs = if lus || rus then noneq else Constraint.add cstr noneq in (noneqs, ucstrsl', ucstrsr')) noneqs (Constraint.empty, LMap.empty, LMap.empty) in (* Now we construct the instantiation of each variable. *) let ctx', us, algs, inst, noneqs = minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs in let us = normalize_opt_subst us in (us, algs), (ctx', Constraint.union noneqs eqs) (* let normalize_conkey = Profile.declare_profile "normalize_context_set" *) (* let normalize_context_set a b c = Profile.profile3 normalize_conkey normalize_context_set a b c *) let universes_of_constr c = let rec aux s c = match kind_of_term c with | Const (_, u) | Ind (_, u) | Construct (_, u) -> LSet.union (Instance.levels u) s | Sort u when not (Sorts.is_small u) -> let u = univ_of_sort u in LSet.union (Universe.levels u) s | _ -> fold_constr aux s c in aux LSet.empty c let restrict_universe_context (univs,csts) s = (* Universes that are not necessary to typecheck the term. E.g. univs introduced by tactics and not used in the proof term. *) let diff = LSet.diff univs s in let rec aux diff candid univs ness = let (diff', candid', univs', ness') = Constraint.fold (fun (l, d, r as c) (diff, candid, univs, csts) -> if not (LSet.mem l diff) then (LSet.remove r diff, candid, univs, Constraint.add c csts) else if not (LSet.mem r diff) then (LSet.remove l diff, candid, univs, Constraint.add c csts) else (diff, Constraint.add c candid, univs, csts)) candid (diff, Constraint.empty, univs, ness) in if ness' == ness then (LSet.diff univs diff', ness) else aux diff' candid' univs' ness' in aux diff csts univs Constraint.empty let simplify_universe_context (univs,csts) = let uf = UF.create () in let noneqs = Constraint.fold (fun (l,d,r) noneqs -> if d == Eq && (LSet.mem l univs || LSet.mem r univs) then (UF.union l r uf; noneqs) else Constraint.add (l,d,r) noneqs) csts Constraint.empty in let partition = UF.partition uf in let flex x = LSet.mem x univs in let subst, univs', csts' = List.fold_left (fun (subst, univs, cstrs) s -> let canon, (global, rigid, flexible) = choose_canonical univs flex LSet.empty s in (* Add equalities for globals which can't be merged anymore. *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) (LSet.union global rigid) cstrs in let subst = LSet.fold (fun f -> LMap.add f canon) flexible subst in (subst, LSet.diff univs flexible, cstrs)) (LMap.empty, univs, noneqs) partition in (* Noneqs is now in canonical form w.r.t. equality constraints, and contains only inequality constraints. *) let csts' = subst_univs_level_constraints subst csts' in (univs', csts'), subst let is_trivial_leq (l,d,r) = Univ.Level.is_prop l && (d == Univ.Le || (d == Univ.Lt && Univ.Level.is_set r)) (* Prop < i <-> Set+1 <= i <-> Set < i *) let translate_cstr (l,d,r as cstr) = if Level.equal Level.prop l && d == Univ.Lt && not (Level.equal Level.set r) then (Level.set, d, r) else cstr let refresh_constraints univs (ctx, cstrs) = let cstrs', univs' = Univ.Constraint.fold (fun c (cstrs', univs as acc) -> let c = translate_cstr c in if is_trivial_leq c then acc else (Univ.Constraint.add c cstrs', UGraph.enforce_constraint c univs)) cstrs (Univ.Constraint.empty, univs) in ((ctx, cstrs'), univs') (**********************************************************************) (* Tools for sort-polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> univ_level_mem u v | None -> false let solve_constraints_system levels level_bounds level_min = let open Univ in let levels = Array.mapi (fun i o -> match o with | Some u -> (match Universe.level u with | Some u -> Some u | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None) | None -> None) levels in let v = Array.copy level_bounds in let nind = Array.length v in let clos = Array.map (fun _ -> Int.Set.empty) levels in (* First compute the transitive closure of the levels dependencies *) for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then clos.(i) <- Int.Set.add j clos.(i); done; done; let rec closure () = let continue = ref false in Array.iteri (fun i deps -> let deps' = Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps in if Int.Set.equal deps deps' then () else (clos.(i) <- deps'; continue := true)) clos; if !continue then closure () else () in closure (); for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && Int.Set.mem j clos.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j)); (* level_min.(i) <- Universe.sup level_min.(i) level_min.(j)) *) done; (* for j=0 to nind-1 do *) (* match levels.(j) with *) (* | Some u when not (Univ.Level.is_small u) -> *) (* v.(i) <- univ_level_rem u v.(i) level_min.(i) *) (* | _ -> () *) (* done *) done; v