(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* f i (make_oname prefix id, obj)) let load_objects = iter_objects load_object let open_objects = iter_objects open_object let subst_objects prefix subst seg = let subst_one = fun (id,obj as node) -> let obj' = subst_object (make_oname prefix id, subst, obj) in if obj' == obj then node else (id, obj') in list_smartmap subst_one seg let load_and_subst_objects i prefix subst seg = List.rev (List.fold_left (fun seg (id,obj as node) -> let obj' = subst_object (make_oname prefix id, subst, obj) in let node = if obj == obj' then node else (id, obj') in load_object i (make_oname prefix id, obj'); node :: seg) [] seg) let classify_segment seg = let rec clean ((substl,keepl,anticipl) as acc) = function | (_,CompilingLibrary _) :: _ | [] -> acc | ((sp,kn as oname),Leaf o) :: stk -> let id = Names.id_of_label (Names.label kn) in (match classify_object (oname,o) with | Dispose -> clean acc stk | Keep o' -> clean (substl, (id,o')::keepl, anticipl) stk | Substitute o' -> clean ((id,o')::substl, keepl, anticipl) stk | Anticipate o' -> clean (substl, keepl, o'::anticipl) stk) | (_,ClosedSection _) :: stk -> clean acc stk (* LEM; TODO: Understand what this does and see if what I do is the correct thing for ClosedMod(ule|type) *) | (_,ClosedModule _) :: stk -> clean acc stk | (_,ClosedModtype _) :: stk -> clean acc stk | (_,OpenedSection _) :: _ -> error "there are still opened sections" | (_,OpenedModule _) :: _ -> error "there are still opened modules" | (_,OpenedModtype _) :: _ -> error "there are still opened module types" | (_,FrozenState _) :: stk -> clean acc stk in clean ([],[],[]) (List.rev seg) let segment_of_objects prefix = List.map (fun (id,obj) -> (make_oname prefix id, Leaf obj)) (* We keep trace of operations in the stack [lib_stk]. [path_prefix] is the current path of sections, where sections are stored in ``correct'' order, the oldest coming first in the list. It may seems costly, but in practice there is not so many openings and closings of sections, but on the contrary there are many constructions of section paths based on the library path. *) let initial_prefix = default_library,(Names.initial_path,Names.empty_dirpath) let lib_stk = ref ([] : library_segment) let comp_name = ref None let library_dp () = match !comp_name with Some m -> m | None -> default_library (* [path_prefix] is a pair of absolute dirpath and a pair of current module path and relative section path *) let path_prefix = ref initial_prefix let sections_depth () = List.length (Names.repr_dirpath (snd (snd !path_prefix))) let sections_are_opened () = match Names.repr_dirpath (snd (snd !path_prefix)) with [] -> false | _ -> true let cwd () = fst !path_prefix let current_dirpath sec = Libnames.drop_dirpath_prefix (library_dp ()) (if sec then cwd () else Libnames.extract_dirpath_prefix (sections_depth ()) (cwd ())) let make_path id = Libnames.make_path (cwd ()) id let path_of_include () = let dir = Names.repr_dirpath (cwd ()) in let new_dir = List.tl dir in let id = List.hd dir in Libnames.make_path (Names.make_dirpath new_dir) id let current_prefix () = snd !path_prefix let make_kn id = let mp,dir = current_prefix () in Names.make_kn mp dir (Names.label_of_id id) let make_con id = let mp,dir = current_prefix () in Names.make_con mp dir (Names.label_of_id id) let make_oname id = make_path id, make_kn id let recalc_path_prefix () = let rec recalc = function | (sp, OpenedSection (dir,_)) :: _ -> dir | (sp, OpenedModule (_,dir,_)) :: _ -> dir | (sp, OpenedModtype (dir,_)) :: _ -> dir | (sp, CompilingLibrary dir) :: _ -> dir | _::l -> recalc l | [] -> initial_prefix in path_prefix := recalc !lib_stk let pop_path_prefix () = let dir,(mp,sec) = !path_prefix in path_prefix := fst (split_dirpath dir), (mp, fst (split_dirpath sec)) let find_entry_p p = let rec find = function | [] -> raise Not_found | ent::l -> if p ent then ent else find l in find !lib_stk let find_split_p p = let rec find = function | [] -> raise Not_found | ent::l -> if p ent then ent,l else find l in find !lib_stk let split_lib_gen test = let rec collect after equal = function | hd::strict_before as before -> if test hd then collect after (hd::equal) strict_before else after,equal,before | [] as before -> after,equal,before in let rec findeq after = function | hd :: before -> if test hd then Some (collect after [hd] before) else (match hd with | (sp,ClosedModule seg) | (sp,ClosedModtype seg) | (sp,ClosedSection seg) -> (match findeq after seg with | None -> findeq (hd::after) before | Some (sub_after,sub_equal,sub_before) -> Some (sub_after, sub_equal, (List.append sub_before before))) | _ -> findeq (hd::after) before) | [] -> None in match findeq [] !lib_stk with | None -> error "no such entry" | Some r -> r let split_lib sp = split_lib_gen (fun x -> (fst x) = sp) (* Adding operations. *) let add_entry sp node = lib_stk := (sp,node) :: !lib_stk let anonymous_id = let n = ref 0 in fun () -> incr n; Names.id_of_string ("_" ^ (string_of_int !n)) let add_anonymous_entry node = let id = anonymous_id () in let name = make_oname id in add_entry name node; name let add_absolutely_named_leaf sp obj = cache_object (sp,obj); add_entry sp (Leaf obj) let add_leaf id obj = if fst (current_prefix ()) = Names.initial_path then error ("No session module started (use -top dir)"); let oname = make_oname id in cache_object (oname,obj); add_entry oname (Leaf obj); oname let add_discharged_leaf id obj = let oname = make_oname id in let newobj = rebuild_object obj in cache_object (oname,newobj); add_entry oname (Leaf newobj) let add_leaves id objs = let oname = make_oname id in let add_obj obj = add_entry oname (Leaf obj); load_object 1 (oname,obj) in List.iter add_obj objs; oname let add_anonymous_leaf obj = let id = anonymous_id () in let oname = make_oname id in cache_object (oname,obj); add_entry oname (Leaf obj) let add_frozen_state () = let _ = add_anonymous_entry (FrozenState (freeze_summaries())) in () (* Modules. *) let is_something_opened = function (_,OpenedSection _) -> true | (_,OpenedModule _) -> true | (_,OpenedModtype _) -> true | _ -> false let current_mod_id () = try match find_entry_p is_something_opened with | oname,OpenedModule (_,_,nametab) -> basename (fst oname) | oname,OpenedModtype (_,nametab) -> basename (fst oname) | _ -> error "you are not in a module" with Not_found -> error "no opened modules" let start_module export id mp nametab = let dir = extend_dirpath (fst !path_prefix) id in let prefix = dir,(mp,Names.empty_dirpath) in let oname = make_path id, make_kn id in if Nametab.exists_module dir then errorlabstrm "open_module" (pr_id id ++ str " already exists") ; add_entry oname (OpenedModule (export,prefix,nametab)); path_prefix := prefix; prefix (* add_frozen_state () must be called in declaremods *) let end_module id = let oname,nametab = try match find_entry_p is_something_opened with | oname,OpenedModule (_,_,nametab) -> let id' = basename (fst oname) in if id<>id' then errorlabstrm "end_module" (str "last opened module is " ++ pr_id id'); oname,nametab | oname,OpenedModtype _ -> let id' = basename (fst oname) in errorlabstrm "end_module" (str "module type " ++ pr_id id' ++ str " is still opened") | oname,OpenedSection _ -> let id' = basename (fst oname) in errorlabstrm "end_module" (str "section " ++ pr_id id' ++ str " is still opened") | _ -> assert false with Not_found -> error "no opened modules" in let (after,modopening,before) = split_lib oname in lib_stk := before; add_entry (make_oname id) (ClosedModule (List.rev_append after (List.rev modopening))); let prefix = !path_prefix in (* LEM: This module business seems more complicated than sections; shouldn't a backtrack into a closed module also do something with global.ml, given that closing a module does? TODO *) recalc_path_prefix (); (* add_frozen_state must be called after processing the module, because we cannot recache interactive modules *) (oname, prefix, nametab,after) let start_modtype id mp nametab = let dir = extend_dirpath (fst !path_prefix) id in let prefix = dir,(mp,Names.empty_dirpath) in let sp = make_path id in let name = sp, make_kn id in if Nametab.exists_cci sp then errorlabstrm "open_modtype" (pr_id id ++ str " already exists") ; add_entry name (OpenedModtype (prefix,nametab)); path_prefix := prefix; prefix let end_modtype id = let sp,nametab = try match find_entry_p is_something_opened with | oname,OpenedModtype (_,nametab) -> let id' = basename (fst oname) in if id<>id' then errorlabstrm "end_modtype" (str "last opened module type is " ++ pr_id id'); oname,nametab | oname,OpenedModule _ -> let id' = basename (fst oname) in errorlabstrm "end_modtype" (str "module " ++ pr_id id' ++ str " is still opened") | oname,OpenedSection _ -> let id' = basename (fst oname) in errorlabstrm "end_modtype" (str "section " ++ pr_id id' ++ str " is still opened") | _ -> assert false with Not_found -> error "no opened module types" in let (after,modtypeopening,before) = split_lib sp in lib_stk := before; add_entry (make_oname id) (ClosedModtype (List.rev_append after (List.rev modtypeopening))); let dir = !path_prefix in recalc_path_prefix (); (* add_frozen_state must be called after processing the module type. This is because we cannot recache interactive module types *) (sp,dir,nametab,after) let contents_after = function | None -> !lib_stk | Some sp -> let (after,_,_) = split_lib sp in after (* Modules. *) let check_for_comp_unit () = let is_decl = function (_,FrozenState _) -> false | _ -> true in try let _ = find_entry_p is_decl in error "a module cannot be started after some declarations" with Not_found -> () (* TODO: use check_for_module ? *) let start_compilation s mp = if !comp_name <> None then error "compilation unit is already started"; if snd (snd (!path_prefix)) <> Names.empty_dirpath then error "some sections are already opened"; let prefix = s, (mp, Names.empty_dirpath) in let _ = add_anonymous_entry (CompilingLibrary prefix) in comp_name := Some s; path_prefix := prefix let end_compilation dir = let _ = try match find_entry_p is_something_opened with | _, OpenedSection _ -> error "There are some open sections" | _, OpenedModule _ -> error "There are some open modules" | _, OpenedModtype _ -> error "There are some open module types" | _ -> assert false with Not_found -> () in let module_p = function (_,CompilingLibrary _) -> true | x -> is_something_opened x in let oname = try match find_entry_p module_p with (oname, CompilingLibrary prefix) -> oname | _ -> assert false with Not_found -> anomaly "No module declared" in let _ = match !comp_name with | None -> anomaly "There should be a module name..." | Some m -> if m <> dir then anomaly ("The current open module has name "^ (Names.string_of_dirpath m) ^ " and not " ^ (Names.string_of_dirpath m)); in let (after,_,before) = split_lib oname in comp_name := None; !path_prefix,after (* Returns true if we are inside an opened module type *) let is_modtype () = let opened_p = function | _, OpenedModtype _ -> true | _ -> false in try let _ = find_entry_p opened_p in true with Not_found -> false (* Returns true if we are inside an opened module *) let is_module () = let opened_p = function | _, OpenedModule _ -> true | _ -> false in try let _ = find_entry_p opened_p in true with Not_found -> false (* Returns the most recent OpenedThing node *) let what_is_opened () = find_entry_p is_something_opened (* Discharge tables *) (* At each level of section, we remember - the list of variables in this section - the list of variables on which each constant depends in this section - the list of variables on which each inductive depends in this section - the list of substitution to do at section closing *) type binding_kind = Explicit | Implicit type variable_info = Names.identifier * binding_kind * Term.constr option * Term.types type variable_context = variable_info list type abstr_list = variable_context Names.Cmap.t * variable_context Names.KNmap.t let sectab = ref ([] : ((Names.identifier * binding_kind * Term.types option) list * Cooking.work_list * abstr_list) list) let add_section () = sectab := ([],(Names.Cmap.empty,Names.KNmap.empty),(Names.Cmap.empty,Names.KNmap.empty)) :: !sectab let add_section_variable id impl keep = match !sectab with | [] -> () (* because (Co-)Fixpoint temporarily uses local vars *) | (vars,repl,abs)::sl -> sectab := ((id,impl,keep)::vars,repl,abs)::sl let rec extract_hyps = function | ((id,impl,keep)::idl,(id',b,t)::hyps) when id=id' -> (id',impl,b,t) :: extract_hyps (idl,hyps) | ((id,impl,Some ty)::idl,hyps) -> (id,impl,None,ty) :: extract_hyps (idl,hyps) | (id::idl,hyps) -> extract_hyps (idl,hyps) | [], _ -> [] let instance_from_variable_context sign = let rec inst_rec = function | (id,b,None,_) :: sign -> id :: inst_rec sign | _ :: sign -> inst_rec sign | [] -> [] in Array.of_list (inst_rec sign) let named_of_variable_context = List.map (fun (id,_,b,t) -> (id,b,t)) let add_section_replacement f g hyps = match !sectab with | [] -> () | (vars,exps,abs)::sl -> let sechyps = extract_hyps (vars,hyps) in let args = instance_from_variable_context (List.rev sechyps) in sectab := (vars,f args exps,g sechyps abs)::sl let add_section_kn kn = let f x (l1,l2) = (l1,Names.KNmap.add kn x l2) in add_section_replacement f f let add_section_constant kn = let f x (l1,l2) = (Names.Cmap.add kn x l1,l2) in add_section_replacement f f let replacement_context () = pi2 (List.hd !sectab) let variables_context () = pi1 (List.hd !sectab) let section_segment_of_constant con = Names.Cmap.find con (fst (pi3 (List.hd !sectab))) let section_segment_of_mutual_inductive kn = Names.KNmap.find kn (snd (pi3 (List.hd !sectab))) let rec list_mem_assoc_in_triple x = function | [] -> raise Not_found | (a,_,_)::l -> compare a x = 0 or list_mem_assoc_in_triple x l let section_instance = function | VarRef id -> if list_mem_assoc_in_triple id (pi1 (List.hd !sectab)) then [||] else raise Not_found | ConstRef con -> Names.Cmap.find con (fst (pi2 (List.hd !sectab))) | IndRef (kn,_) | ConstructRef ((kn,_),_) -> Names.KNmap.find kn (snd (pi2 (List.hd !sectab))) let is_in_section ref = try ignore (section_instance ref); true with Not_found -> false let init_sectab () = sectab := [] let freeze_sectab () = !sectab let unfreeze_sectab s = sectab := s let _ = Summary.declare_summary "section-context" { Summary.freeze_function = freeze_sectab; Summary.unfreeze_function = unfreeze_sectab; Summary.init_function = init_sectab; Summary.survive_module = false; Summary.survive_section = false } (*************) (* Sections. *) (* XML output hooks *) let xml_open_section = ref (fun id -> ()) let xml_close_section = ref (fun id -> ()) let set_xml_open_section f = xml_open_section := f let set_xml_close_section f = xml_close_section := f let open_section id = let olddir,(mp,oldsec) = !path_prefix in let dir = extend_dirpath olddir id in let prefix = dir, (mp, extend_dirpath oldsec id) in let name = make_path id, make_kn id (* this makes little sense however *) in if Nametab.exists_section dir then errorlabstrm "open_section" (pr_id id ++ str " already exists"); let sum = freeze_summaries() in add_entry name (OpenedSection (prefix, sum)); (*Pushed for the lifetime of the section: removed by unfrozing the summary*) Nametab.push_dir (Nametab.Until 1) dir (DirOpenSection prefix); path_prefix := prefix; if !Flags.xml_export then !xml_open_section id; add_section () (* Restore lib_stk and summaries as before the section opening, and add a ClosedSection object. *) let discharge_item ((sp,_ as oname),e) = match e with | Leaf lobj -> Option.map (fun o -> (basename sp,o)) (discharge_object (oname,lobj)) | FrozenState _ -> None | ClosedSection _ | ClosedModtype _ | ClosedModule _ -> None | OpenedSection _ | OpenedModtype _ | OpenedModule _ | CompilingLibrary _ -> anomaly "discharge_item" let close_section id = let oname,fs = try match find_entry_p is_something_opened with | oname,OpenedSection (_,fs) -> let id' = basename (fst oname) in if id <> id' then errorlabstrm "close_section" (str "Last opened section is " ++ pr_id id' ++ str "."); (oname,fs) | _ -> assert false with Not_found -> error "No opened section." in let (secdecls,secopening,before) = split_lib oname in lib_stk := before; let full_olddir = fst !path_prefix in pop_path_prefix (); add_entry (make_oname id) (ClosedSection (List.rev_append secdecls (List.rev secopening))); if !Flags.xml_export then !xml_close_section id; let newdecls = List.map discharge_item secdecls in Summary.section_unfreeze_summaries fs; List.iter (Option.iter (fun (id,o) -> add_discharged_leaf id o)) newdecls; Cooking.clear_cooking_sharing (); Nametab.push_dir (Nametab.Until 1) full_olddir (DirClosedSection full_olddir) (*****************) (* Backtracking. *) let (inLabel,outLabel) = declare_object {(default_object "DOT") with classify_function = (fun _ -> Dispose)} let recache_decl = function | (sp, Leaf o) -> cache_object (sp,o) | (_,OpenedSection _) -> add_section () | _ -> () let recache_context ctx = List.iter recache_decl ctx let is_frozen_state = function (_,FrozenState _) -> true | _ -> false let has_top_frozen_state () = let rec aux = function | (sp, FrozenState _)::_ -> Some sp | (sp, Leaf o)::t when object_tag o = "DOT" -> aux t | _ -> None in aux !lib_stk let set_lib_stk new_lib_stk = lib_stk := new_lib_stk; recalc_path_prefix (); let spf = match find_entry_p is_frozen_state with | (sp, FrozenState f) -> unfreeze_summaries f; sp | _ -> assert false in let (after,_,_) = split_lib spf in try recache_context after with | Not_found -> error "Tried to set environment to an incoherent state." let reset_to_gen test = let (_,_,before) = split_lib_gen test in set_lib_stk before let reset_to sp = reset_to_gen (fun x -> (fst x) = sp) let reset_to_state sp = let (_,eq,before) = split_lib sp in (* if eq a frozen state, we'll reset to it *) match eq with | [_,FrozenState f] -> lib_stk := eq@before; unfreeze_summaries f | _ -> error "Not a frozen state" (* LEM: TODO * We will need to muck with frozen states in after, too! * Not only FrozenState, but also those embedded in Opened(Section|Module|Modtype) *) let delete_gen test = let (after,equal,before) = split_lib_gen test in let rec chop_at_dot = function | [] as l -> l | (_, Leaf o)::t when object_tag o = "DOT" -> t | _::t -> chop_at_dot t and chop_before_dot = function | [] as l -> l | (_, Leaf o)::t as l when object_tag o = "DOT" -> l | _::t -> chop_before_dot t in set_lib_stk (List.rev_append (chop_at_dot after) (chop_before_dot before)) let delete sp = delete_gen (fun x -> (fst x) = sp) let reset_name (loc,id) = let (sp,_) = try find_entry_p (fun (sp,_) -> let (_,spi) = repr_path (fst sp) in id = spi) with Not_found -> user_err_loc (loc,"reset_name",pr_id id ++ str ": no such entry") in reset_to sp let remove_name (loc,id) = let (sp,_) = try find_entry_p (fun (sp,_) -> let (_,spi) = repr_path (fst sp) in id = spi) with Not_found -> user_err_loc (loc,"remove_name",pr_id id ++ str ": no such entry") in delete sp let is_mod_node = function | OpenedModule _ | OpenedModtype _ | OpenedSection _ | ClosedModule _ | ClosedModtype _ | ClosedSection _ -> true | Leaf o -> let t = object_tag o in t = "MODULE" || t = "MODULE TYPE" || t = "MODULE ALIAS" | _ -> false (* Reset on a module or section name in order to bypass constants with the same name *) let reset_mod (loc,id) = let (_,before) = try find_split_p (fun (sp,node) -> let (_,spi) = repr_path (fst sp) in id = spi && is_mod_node node) with Not_found -> user_err_loc (loc,"reset_mod",pr_id id ++ str ": no such entry") in set_lib_stk before let mark_end_of_command, current_command_label, set_command_label = let n = ref 0 in (fun () -> match !lib_stk with (_,Leaf o)::_ when object_tag o = "DOT" -> () | _ -> incr n;add_anonymous_leaf (inLabel !n)), (fun () -> !n), (fun x -> n:=x) let is_label_n n x = match x with | (sp,Leaf o) when object_tag o = "DOT" && n = outLabel o -> true | _ -> false (* Reset the label registered by [mark_end_of_command()] with number n. *) let reset_label n = let current = current_command_label() in if n < current then let res = reset_to_gen (is_label_n n) in set_command_label (n-1); (* forget state numbers after n only if reset succeeded *) res else (* optimisation to avoid recaching when not necessary (why is it so long??) *) match !lib_stk with | [] -> () | x :: ls -> (lib_stk := ls;set_command_label (n-1)) let rec back_stk n stk = match stk with (sp,Leaf o)::tail when object_tag o = "DOT" -> if n=0 then sp else back_stk (n-1) tail | _::tail -> back_stk n tail | [] -> error "Reached begin of command history" let back n = reset_to (back_stk n !lib_stk) (* State and initialization. *) type frozen = Names.dir_path option * library_segment let freeze () = (!comp_name, !lib_stk) let unfreeze (mn,stk) = comp_name := mn; lib_stk := stk; recalc_path_prefix () let init () = lib_stk := []; add_frozen_state (); comp_name := None; path_prefix := initial_prefix; init_summaries() (* Initial state. *) let initial_state = ref None let declare_initial_state () = let name = add_anonymous_entry (FrozenState (freeze_summaries())) in initial_state := Some name let reset_initial () = match !initial_state with | None -> error "Resetting to the initial state is possible only interactively" | Some sp -> begin match split_lib sp with | (_,[_,FrozenState fs as hd],before) -> lib_stk := hd::before; recalc_path_prefix (); set_command_label 0; unfreeze_summaries fs | _ -> assert false end (* Misc *) let mp_of_global ref = match ref with | VarRef id -> fst (current_prefix ()) | ConstRef cst -> Names.con_modpath cst | IndRef ind -> Names.ind_modpath ind | ConstructRef constr -> Names.constr_modpath constr let rec dp_of_mp modp = match modp with | Names.MPfile dp -> dp | Names.MPbound _ | Names.MPself _ -> library_dp () | Names.MPdot (mp,_) -> dp_of_mp mp let rec split_mp mp = match mp with | Names.MPfile dp -> dp, Names.empty_dirpath | Names.MPdot (prfx, lbl) -> let mprec, dprec = split_mp prfx in mprec, Names.make_dirpath (Names.id_of_string (Names.string_of_label lbl) :: (Names.repr_dirpath dprec)) | Names.MPself msid -> let (_, id, dp) = Names.repr_msid msid in library_dp(), Names.make_dirpath [Names.id_of_string id] | Names.MPbound mbid -> let (_, id, dp) = Names.repr_mbid mbid in library_dp(), Names.make_dirpath [Names.id_of_string id] let split_modpath mp = let rec aux = function | Names.MPfile dp -> dp, [] | Names.MPbound mbid -> library_dp (), [Names.id_of_mbid mbid] | Names.MPself msid -> library_dp (), [Names.id_of_msid msid] | Names.MPdot (mp,l) -> let (mp', lab) = aux mp in (mp', Names.id_of_label l :: lab) in let (mp, l) = aux mp in mp, l let library_part ref = match ref with | VarRef id -> library_dp () | _ -> dp_of_mp (mp_of_global ref) let remove_section_part ref = let sp = Nametab.sp_of_global ref in let dir,_ = repr_path sp in match ref with | VarRef id -> anomaly "remove_section_part not supported on local variables" | _ -> if is_dirpath_prefix_of dir (cwd ()) then (* Not yet (fully) discharged *) extract_dirpath_prefix (sections_depth ()) (cwd ()) else (* Theorem/Lemma outside its outer section of definition *) dir (************************) (* Discharging names *) let pop_kn kn = let (mp,dir,l) = Names.repr_kn kn in Names.make_kn mp (dirpath_prefix dir) l let pop_con con = let (mp,dir,l) = Names.repr_con con in Names.make_con mp (dirpath_prefix dir) l let con_defined_in_sec kn = let _,dir,_ = Names.repr_con kn in dir <> Names.empty_dirpath && fst (split_dirpath dir) = snd (current_prefix ()) let defined_in_sec kn = let _,dir,_ = Names.repr_kn kn in dir <> Names.empty_dirpath && fst (split_dirpath dir) = snd (current_prefix ()) let discharge_global = function | ConstRef kn when con_defined_in_sec kn -> ConstRef (pop_con kn) | IndRef (kn,i) when defined_in_sec kn -> IndRef (pop_kn kn,i) | ConstructRef ((kn,i),j) when defined_in_sec kn -> ConstructRef ((pop_kn kn,i),j) | r -> r let discharge_kn kn = if defined_in_sec kn then pop_kn kn else kn let discharge_con cst = if con_defined_in_sec cst then pop_con cst else cst let discharge_inductive (kn,i) = (discharge_kn kn,i)