(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* f i (make_oname prefix id, obj)) let load_objects = iter_objects load_object let open_objects = iter_objects open_object let subst_objects subst seg = let subst_one = fun (id,obj as node) -> let obj' = subst_object (subst,obj) in if obj' == obj then node else (id, obj') in List.smartmap subst_one seg (*let load_and_subst_objects i prefix subst seg = List.rev (List.fold_left (fun seg (id,obj as node) -> let obj' = subst_object (make_oname prefix id, subst, obj) in let node = if obj == obj' then node else (id, obj') in load_object i (make_oname prefix id, obj'); node :: seg) [] seg) *) let classify_segment seg = let rec clean ((substl,keepl,anticipl) as acc) = function | (_,CompilingLibrary _) :: _ | [] -> acc | ((sp,kn),Leaf o) :: stk -> let id = Names.Label.to_id (Names.label kn) in (match classify_object o with | Dispose -> clean acc stk | Keep o' -> clean (substl, (id,o')::keepl, anticipl) stk | Substitute o' -> clean ((id,o')::substl, keepl, anticipl) stk | Anticipate o' -> clean (substl, keepl, o'::anticipl) stk) | (_,ClosedSection _) :: stk -> clean acc stk (* LEM; TODO: Understand what this does and see if what I do is the correct thing for ClosedMod(ule|type) *) | (_,ClosedModule _) :: stk -> clean acc stk | (_,OpenedSection _) :: _ -> error "there are still opened sections" | (_,OpenedModule (ty,_,_,_)) :: _ -> error ("there are still opened " ^ module_kind ty ^"s") | (_,FrozenState _) :: stk -> clean acc stk in clean ([],[],[]) (List.rev seg) let segment_of_objects prefix = List.map (fun (id,obj) -> (make_oname prefix id, Leaf obj)) (* We keep trace of operations in the stack [lib_stk]. [path_prefix] is the current path of sections, where sections are stored in ``correct'' order, the oldest coming first in the list. It may seems costly, but in practice there is not so many openings and closings of sections, but on the contrary there are many constructions of section paths based on the library path. *) let initial_prefix = default_library,(Names.initial_path,Names.Dir_path.empty) let lib_stk = ref ([] : library_segment) let comp_name = ref None let library_dp () = match !comp_name with Some m -> m | None -> default_library (* [path_prefix] is a pair of absolute dirpath and a pair of current module path and relative section path *) let path_prefix = ref initial_prefix let sections_depth () = List.length (Names.Dir_path.repr (snd (snd !path_prefix))) let sections_are_opened () = match Names.Dir_path.repr (snd (snd !path_prefix)) with [] -> false | _ -> true let cwd () = fst !path_prefix let cwd_except_section () = Libnames.pop_dirpath_n (sections_depth ()) (cwd ()) let current_dirpath sec = Libnames.drop_dirpath_prefix (library_dp ()) (if sec then cwd () else cwd_except_section ()) let make_path id = Libnames.make_path (cwd ()) id let make_path_except_section id = Libnames.make_path (cwd_except_section ()) id let path_of_include () = let dir = Names.Dir_path.repr (cwd ()) in let new_dir = List.tl dir in let id = List.hd dir in Libnames.make_path (Names.Dir_path.make new_dir) id let current_prefix () = snd !path_prefix let make_kn id = let mp,dir = current_prefix () in Names.make_kn mp dir (Names.Label.of_id id) let make_con id = let mp,dir = current_prefix () in Names.make_con mp dir (Names.Label.of_id id) let make_oname id = make_path id, make_kn id let recalc_path_prefix () = let rec recalc = function | (sp, OpenedSection (dir,_)) :: _ -> dir | (sp, OpenedModule (_,_,dir,_)) :: _ -> dir | (sp, CompilingLibrary dir) :: _ -> dir | _::l -> recalc l | [] -> initial_prefix in path_prefix := recalc !lib_stk let pop_path_prefix () = let dir,(mp,sec) = !path_prefix in path_prefix := fst (split_dirpath dir), (mp, fst (split_dirpath sec)) let find_entry_p p = let rec find = function | [] -> raise Not_found | ent::l -> if p ent then ent else find l in find !lib_stk let split_lib_gen test = let rec collect after equal = function | hd::before when test hd -> collect after (hd::equal) before | before -> after,equal,before in let rec findeq after = function | hd :: before -> if test hd then Some (collect after [hd] before) else (match hd with | (sp,ClosedModule seg) | (sp,ClosedSection seg) -> (match findeq after seg with | None -> findeq (hd::after) before | Some (sub_after,sub_equal,sub_before) -> Some (sub_after, sub_equal, (List.append sub_before before))) | _ -> findeq (hd::after) before) | [] -> None in match findeq [] !lib_stk with | None -> error "no such entry" | Some r -> r let eq_object_name (fp1, kn1) (fp2, kn2) = eq_full_path fp1 fp2 && Names.KerName.equal kn1 kn2 let split_lib sp = let is_sp (nsp, _) = eq_object_name sp nsp in split_lib_gen is_sp let split_lib_at_opening sp = let is_sp (nsp, obj) = match obj with | OpenedSection _ | OpenedModule _ | CompilingLibrary _ -> eq_object_name nsp sp | _ -> false in let a, s, b = split_lib_gen is_sp in match s with | [obj] -> (a, obj, b) | _ -> assert false (* Adding operations. *) let add_entry sp node = lib_stk := (sp,node) :: !lib_stk let anonymous_id = let n = ref 0 in fun () -> incr n; Names.Id.of_string ("_" ^ (string_of_int !n)) let add_anonymous_entry node = let id = anonymous_id () in let name = make_oname id in add_entry name node; name let add_leaf id obj = let (path, _) = current_prefix () in if Names.mp_eq path Names.initial_path then error ("No session module started (use -top dir)"); let oname = make_oname id in cache_object (oname,obj); add_entry oname (Leaf obj); oname let add_discharged_leaf id obj = let oname = make_oname id in let newobj = rebuild_object obj in cache_object (oname,newobj); add_entry oname (Leaf newobj) let add_leaves id objs = let oname = make_oname id in let add_obj obj = add_entry oname (Leaf obj); load_object 1 (oname,obj) in List.iter add_obj objs; oname let add_anonymous_leaf obj = let id = anonymous_id () in let oname = make_oname id in cache_object (oname,obj); add_entry oname (Leaf obj) let add_frozen_state () = let _ = add_anonymous_entry (FrozenState (freeze_summaries())) in () (* Modules. *) let is_opening_node = function | _,(OpenedSection _ | OpenedModule _) -> true | _ -> false let is_opening_node_or_lib = function | _,(CompilingLibrary _ | OpenedSection _ | OpenedModule _) -> true | _ -> false let current_mod_id () = try match find_entry_p is_opening_node_or_lib with | oname,OpenedModule (_,_,_,fs) -> basename (fst oname) | oname,CompilingLibrary _ -> basename (fst oname) | _ -> error "you are not in a module" with Not_found -> error "no opened modules" let start_mod is_type export id mp fs = let dir = add_dirpath_suffix (fst !path_prefix) id in let prefix = dir,(mp,Names.Dir_path.empty) in let sp = make_path id in let oname = sp, make_kn id in let exists = if is_type then Nametab.exists_cci sp else Nametab.exists_module dir in if exists then errorlabstrm "open_module" (pr_id id ++ str " already exists"); add_entry oname (OpenedModule (is_type,export,prefix,fs)); path_prefix := prefix; prefix (* add_frozen_state () must be called in declaremods *) let start_module = start_mod false let start_modtype = start_mod true None let error_still_opened string oname = let id = basename (fst oname) in errorlabstrm "" (str ("The "^string^" ") ++ pr_id id ++ str " is still opened.") let end_mod is_type = let oname,fs = try match find_entry_p is_opening_node with | oname,OpenedModule (ty,_,_,fs) -> if Pervasives.(=) ty is_type then oname, fs else error_still_opened (module_kind ty) oname | oname,OpenedSection _ -> error_still_opened "section" oname | _ -> assert false with Not_found -> error "No opened modules." in let (after,mark,before) = split_lib_at_opening oname in lib_stk := before; add_entry oname (ClosedModule (List.rev (mark::after))); let prefix = !path_prefix in recalc_path_prefix (); (* add_frozen_state must be called after processing the module, because we cannot recache interactive modules *) (oname, prefix, fs, after) let end_module () = end_mod false let end_modtype () = end_mod true let contents_after = function | None -> !lib_stk | Some sp -> let (after,_,_) = split_lib sp in after (* Modules. *) (* TODO: use check_for_module ? *) let start_compilation s mp = if !comp_name != None then error "compilation unit is already started"; if not (Names.Dir_path.equal (snd (snd (!path_prefix))) Names.Dir_path.empty) then error "some sections are already opened"; let prefix = s, (mp, Names.Dir_path.empty) in let _ = add_anonymous_entry (CompilingLibrary prefix) in comp_name := Some s; path_prefix := prefix let end_compilation dir = let _ = try match snd (find_entry_p is_opening_node) with | OpenedSection _ -> error "There are some open sections." | OpenedModule (ty,_,_,_) -> error ("There are some open "^module_kind ty^"s.") | _ -> assert false with Not_found -> () in let is_opening_lib = function _,CompilingLibrary _ -> true | _ -> false in let oname = try match find_entry_p is_opening_lib with | (oname, CompilingLibrary prefix) -> oname | _ -> assert false with Not_found -> anomaly (Pp.str "No module declared") in let _ = match !comp_name with | None -> anomaly (Pp.str "There should be a module name...") | Some m -> if not (Names.Dir_path.equal m dir) then anomaly (str "The current open module has name" ++ spc () ++ pr_dirpath m ++ spc () ++ str "and not" ++ spc () ++ pr_dirpath m); in let (after,mark,before) = split_lib_at_opening oname in comp_name := None; !path_prefix,after (* Returns true if we are inside an opened module or module type *) let is_module_gen which check = let test = function | _, OpenedModule (ty,_,_,_) -> which ty | _ -> false in try match find_entry_p test with | _, OpenedModule (ty,_,_,_) -> check ty | _ -> assert false with Not_found -> false let is_module_or_modtype () = is_module_gen (fun _ -> true) (fun _ -> true) let is_modtype () = is_module_gen (fun b -> b) (fun _ -> true) let is_modtype_strict () = is_module_gen (fun _ -> true) (fun b -> b) let is_module () = is_module_gen (fun b -> not b) (fun _ -> true) (* Returns the opening node of a given name *) let find_opening_node id = try let oname,entry = find_entry_p is_opening_node in let id' = basename (fst oname) in if not (Names.Id.equal id id') then error ("Last block to end has name "^(Names.Id.to_string id')^"."); entry with Not_found -> error "There is nothing to end." (* Discharge tables *) (* At each level of section, we remember - the list of variables in this section - the list of variables on which each constant depends in this section - the list of variables on which each inductive depends in this section - the list of substitution to do at section closing *) type variable_info = Names.Id.t * Decl_kinds.binding_kind * Term.constr option * Term.types type variable_context = variable_info list type abstr_list = variable_context Names.Cmap.t * variable_context Names.Mindmap.t let sectab = ref ([] : ((Names.Id.t * Decl_kinds.binding_kind) list * Cooking.work_list * abstr_list) list) let add_section () = sectab := ([],(Names.Cmap.empty,Names.Mindmap.empty),(Names.Cmap.empty,Names.Mindmap.empty)) :: !sectab let add_section_variable id impl = match !sectab with | [] -> () (* because (Co-)Fixpoint temporarily uses local vars *) | (vars,repl,abs)::sl -> sectab := ((id,impl)::vars,repl,abs)::sl let extract_hyps (secs,ohyps) = let rec aux = function | ((id,impl)::idl,(id',b,t)::hyps) when Names.Id.equal id id' -> (id',impl,b,t) :: aux (idl,hyps) | (id::idl,hyps) -> aux (idl,hyps) | [], _ -> [] in aux (secs,ohyps) let instance_from_variable_context sign = let rec inst_rec = function | (id,b,None,_) :: sign -> id :: inst_rec sign | _ :: sign -> inst_rec sign | [] -> [] in Array.of_list (inst_rec sign) let named_of_variable_context = List.map (fun (id,_,b,t) -> (id,b,t)) let add_section_replacement f g hyps = match !sectab with | [] -> () | (vars,exps,abs)::sl -> let sechyps = extract_hyps (vars,hyps) in let args = instance_from_variable_context (List.rev sechyps) in sectab := (vars,f args exps,g sechyps abs)::sl let add_section_kn kn = let f x (l1,l2) = (l1,Names.Mindmap.add kn x l2) in add_section_replacement f f let add_section_constant kn = let f x (l1,l2) = (Names.Cmap.add kn x l1,l2) in add_section_replacement f f let replacement_context () = pi2 (List.hd !sectab) let section_segment_of_constant con = Names.Cmap.find con (fst (pi3 (List.hd !sectab))) let section_segment_of_mutual_inductive kn = Names.Mindmap.find kn (snd (pi3 (List.hd !sectab))) let rec list_mem_assoc x = function | [] -> raise Not_found | (a, _) :: l -> Int.equal (Names.Id.compare a x) 0 || list_mem_assoc x l let section_instance = function | VarRef id -> if list_mem_assoc id (pi1 (List.hd !sectab)) then [||] else raise Not_found | ConstRef con -> Names.Cmap.find con (fst (pi2 (List.hd !sectab))) | IndRef (kn,_) | ConstructRef ((kn,_),_) -> Names.Mindmap.find kn (snd (pi2 (List.hd !sectab))) let is_in_section ref = try ignore (section_instance ref); true with Not_found -> false let init_sectab () = sectab := [] let freeze_sectab () = !sectab let unfreeze_sectab s = sectab := s let _ = Summary.declare_summary "section-context" { Summary.freeze_function = freeze_sectab; Summary.unfreeze_function = unfreeze_sectab; Summary.init_function = init_sectab } (*************) (* Sections. *) (* XML output hooks *) let xml_open_section = ref (fun id -> ()) let xml_close_section = ref (fun id -> ()) let set_xml_open_section f = xml_open_section := f let set_xml_close_section f = xml_close_section := f let open_section id = let olddir,(mp,oldsec) = !path_prefix in let dir = add_dirpath_suffix olddir id in let prefix = dir, (mp, add_dirpath_suffix oldsec id) in let name = make_path id, make_kn id (* this makes little sense however *) in if Nametab.exists_section dir then errorlabstrm "open_section" (pr_id id ++ str " already exists."); let fs = freeze_summaries() in add_entry name (OpenedSection (prefix, fs)); (*Pushed for the lifetime of the section: removed by unfrozing the summary*) Nametab.push_dir (Nametab.Until 1) dir (DirOpenSection prefix); path_prefix := prefix; if !Flags.xml_export then !xml_open_section id; add_section () (* Restore lib_stk and summaries as before the section opening, and add a ClosedSection object. *) let discharge_item ((sp,_ as oname),e) = match e with | Leaf lobj -> Option.map (fun o -> (basename sp,o)) (discharge_object (oname,lobj)) | FrozenState _ -> None | ClosedSection _ | ClosedModule _ -> None | OpenedSection _ | OpenedModule _ | CompilingLibrary _ -> anomaly (Pp.str "discharge_item") let close_section () = let oname,fs = try match find_entry_p is_opening_node with | oname,OpenedSection (_,fs) -> oname,fs | _ -> assert false with Not_found -> error "No opened section." in let (secdecls,mark,before) = split_lib_at_opening oname in lib_stk := before; let full_olddir = fst !path_prefix in pop_path_prefix (); add_entry oname (ClosedSection (List.rev (mark::secdecls))); if !Flags.xml_export then !xml_close_section (basename (fst oname)); let newdecls = List.map discharge_item secdecls in Summary.unfreeze_summaries fs; List.iter (Option.iter (fun (id,o) -> add_discharged_leaf id o)) newdecls; Cooking.clear_cooking_sharing (); Nametab.push_dir (Nametab.Until 1) full_olddir (DirClosedSection full_olddir) (*****************) (* Backtracking. *) let (inLabel : int -> obj), (outLabel : obj -> int) = declare_object_full {(default_object "DOT") with classify_function = (fun _ -> Dispose)} let recache_decl = function | (sp, Leaf o) -> cache_object (sp,o) | (_,OpenedSection _) -> add_section () | _ -> () let recache_context ctx = List.iter recache_decl ctx let is_frozen_state = function (_,FrozenState _) -> true | _ -> false let set_lib_stk new_lib_stk = lib_stk := new_lib_stk; recalc_path_prefix (); let spf = match find_entry_p is_frozen_state with | (sp, FrozenState f) -> unfreeze_summaries f; sp | _ -> assert false in let (after,_,_) = split_lib spf in try recache_context after with | Not_found -> error "Tried to set environment to an incoherent state." let reset_to test = let (_,_,before) = split_lib_gen test in set_lib_stk before let first_command_label = 1 let mark_end_of_command, current_command_label, reset_command_label = let n = ref (first_command_label-1) in (fun () -> match !lib_stk with (_,Leaf o)::_ when String.equal (object_tag o) "DOT" -> () | _ -> incr n;add_anonymous_leaf (inLabel !n)), (fun () -> !n), (fun x -> n:=x;add_anonymous_leaf (inLabel x)) let is_label_n n x = match x with | (sp, Leaf o) when String.equal (object_tag o) "DOT" && Int.equal n (outLabel o) -> true | _ -> false (** Reset the label registered by [mark_end_of_command()] with number n, which should be strictly in the past. *) let reset_label n = if n >= current_command_label () then error "Cannot backtrack to the current label or a future one"; reset_to (is_label_n n); (* forget state numbers after n only if reset succeeded *) reset_command_label n (** Search the last label registered before defining [id] *) let label_before_name (loc,id) = let found = ref false in let search = function | (_, Leaf o) when !found && String.equal (object_tag o) "DOT" -> true | ((fp, _),_) -> let (_, name) = repr_path fp in let () = if Names.Id.equal id name then found := true in false in match find_entry_p search with | (_,Leaf o) -> outLabel o | _ -> raise Not_found (* State and initialization. *) type frozen = Names.Dir_path.t option * library_segment let freeze () = (!comp_name, !lib_stk) let unfreeze (mn,stk) = comp_name := mn; lib_stk := stk; recalc_path_prefix () let init () = lib_stk := []; add_frozen_state (); comp_name := None; path_prefix := initial_prefix; init_summaries() (* Misc *) let mp_of_global ref = match ref with | VarRef id -> fst (current_prefix ()) | ConstRef cst -> Names.con_modpath cst | IndRef ind -> Names.ind_modpath ind | ConstructRef constr -> Names.constr_modpath constr let rec dp_of_mp modp = match modp with | Names.MPfile dp -> dp | Names.MPbound _ -> library_dp () | Names.MPdot (mp,_) -> dp_of_mp mp let rec split_mp mp = match mp with | Names.MPfile dp -> dp, Names.Dir_path.empty | Names.MPdot (prfx, lbl) -> let mprec, dprec = split_mp prfx in mprec, Names.Dir_path.make (Names.Id.of_string (Names.Label.to_string lbl) :: (Names.Dir_path.repr dprec)) | Names.MPbound mbid -> let (_, id, dp) = Names.MBId.repr mbid in library_dp(), Names.Dir_path.make [id] let split_modpath mp = let rec aux = function | Names.MPfile dp -> dp, [] | Names.MPbound mbid -> library_dp (), [Names.MBId.to_id mbid] | Names.MPdot (mp,l) -> let (mp', lab) = aux mp in (mp', Names.Label.to_id l :: lab) in let (mp, l) = aux mp in mp, l let library_part ref = match ref with | VarRef id -> library_dp () | _ -> dp_of_mp (mp_of_global ref) let remove_section_part ref = let sp = Nametab.path_of_global ref in let dir,_ = repr_path sp in match ref with | VarRef id -> anomaly (Pp.str "remove_section_part not supported on local variables") | _ -> if is_dirpath_prefix_of dir (cwd ()) then (* Not yet (fully) discharged *) pop_dirpath_n (sections_depth ()) (cwd ()) else (* Theorem/Lemma outside its outer section of definition *) dir (************************) (* Discharging names *) let con_defined_in_sec kn = let _,dir,_ = Names.repr_con kn in not (Names.Dir_path.is_empty dir) && Names.Dir_path.equal (fst (split_dirpath dir)) (snd (current_prefix ())) let defined_in_sec kn = let _,dir,_ = Names.repr_mind kn in not (Names.Dir_path.is_empty dir) && Names.Dir_path.equal (fst (split_dirpath dir)) (snd (current_prefix ())) let discharge_global = function | ConstRef kn when con_defined_in_sec kn -> ConstRef (Globnames.pop_con kn) | IndRef (kn,i) when defined_in_sec kn -> IndRef (Globnames.pop_kn kn,i) | ConstructRef ((kn,i),j) when defined_in_sec kn -> ConstructRef ((Globnames.pop_kn kn,i),j) | r -> r let discharge_kn kn = if defined_in_sec kn then Globnames.pop_kn kn else kn let discharge_con cst = if con_defined_in_sec cst then Globnames.pop_con cst else cst let discharge_inductive (kn,i) = (discharge_kn kn,i)