(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* begin implicit_args := oa; strict_implicit_args := ob; contextual_implicit_args := oc; raise e end (*s Computation of implicit arguments *) (* We remember various information about why an argument is (automatically) inferable as implicit - [DepRigid] means that the implicit argument can be found by unification along a rigid path (we do not print the arguments of this kind if there is enough arguments to infer them) - [DepFlex] means that the implicit argument can be found by unification along a collapsable path only (e.g. as x in (P x) where P is another argument) (we do (defensively) print the arguments of this kind) - [DepFlexAndRigid] means that the least argument from which the implicit argument can be inferred is following a collapsable path but there is a greater argument from where the implicit argument is inferable following a rigid path (useful to know how to print a partial application) We also consider arguments inferable from the conclusion but it is operational only if [conclusion_matters] is true. *) type argument_position = | Conclusion | Hyp of int type implicit_explanation = | DepRigid of argument_position | DepFlex of argument_position | DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position | Manual let argument_less = function | Hyp n, Hyp n' -> n true | Conclusion, _ -> false let update pos rig (na,st) = let e = if rig then match st with | None -> DepRigid pos | Some (DepRigid n as x) -> if argument_less (pos,n) then DepRigid pos else x | Some (DepFlexAndRigid (fpos,rpos) as x) -> if argument_less (pos,fpos) or pos=fpos then DepRigid pos else if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x | Some (DepFlex fpos) -> if argument_less (pos,fpos) or pos=fpos then DepRigid pos else DepFlexAndRigid (fpos,pos) | Some Manual -> assert false else match st with | None -> DepFlex pos | Some (DepRigid rpos as x) -> if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x | Some (DepFlexAndRigid (fpos,rpos) as x) -> if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x | Some (DepFlex fpos as x) -> if argument_less (pos,fpos) then DepFlex pos else x | Some Manual -> assert false in na, Some e (* modified is_rigid_reference with a truncated env *) let is_flexible_reference env bound depth f = match kind_of_term f with | Rel n when n >= bound+depth -> (* inductive type *) false | Rel n when n >= depth -> (* previous argument *) true | Rel n -> (* since local definitions have been expanded *) false | Const kn -> let cb = Environ.lookup_constant kn env in cb.const_body <> None & not cb.const_opaque | Var id -> let (_,value,_) = Environ.lookup_named id env in value <> None | Ind _ | Construct _ -> false | _ -> true let push_lift d (e,n) = (push_rel d e,n+1) (* Precondition: rels in env are for inductive types only *) let add_free_rels_until strict bound env m pos acc = let rec frec rig (env,depth as ed) c = match kind_of_term (whd_betadeltaiota env c) with | Rel n when (n < bound+depth) & (n >= depth) -> acc.(bound+depth-n-1) <- update pos rig (acc.(bound+depth-n-1)) | App (f,_) when rig & is_flexible_reference env bound depth f -> if strict then () else iter_constr_with_full_binders push_lift (frec false) ed c | Case _ when rig -> if strict then () else iter_constr_with_full_binders push_lift (frec false) ed c | _ -> iter_constr_with_full_binders push_lift (frec rig) ed c in frec true (env,1) m; acc (* calcule la liste des arguments implicites *) let compute_implicits_gen strict contextual env t = let rec aux env avoid n names t = let t = whd_betadeltaiota env t in match kind_of_term t with | Prod (na,a,b) -> let na',avoid' = Termops.concrete_name None avoid names na b in add_free_rels_until strict n env a (Hyp (n+1)) (aux (push_rel (na',None,a) env) avoid' (n+1) (na'::names) b) | _ -> let names = List.rev names in let v = Array.map (fun na -> na,None) (Array.of_list names) in if contextual then add_free_rels_until strict n env t Conclusion v else v in match kind_of_term (whd_betadeltaiota env t) with | Prod (na,a,b) -> let na',avoid = Termops.concrete_name None [] [] na b in let v = aux (push_rel (na',None,a) env) avoid 1 [na'] b in Array.to_list v | _ -> [] let compute_implicits_auto env (_,strict,contextual) t = let l = compute_implicits_gen strict contextual env t in List.map (function | (Name id, Some imp) -> Some (id,imp) | (Anonymous, Some _) -> anomaly "Unnamed implicit" | _ -> None) l let compute_implicits env t = compute_implicits_auto env (implicit_flags()) t let set_implicit id imp = Some (id,match imp with None -> Manual | Some imp -> imp) let compute_manual_implicits flags ref l = let t = Global.type_of_global ref in let autoimps = compute_implicits_gen false true (Global.env()) t in let n = List.length autoimps in if not (list_distinct l) then error ("Some parameters are referred more than once"); (* Compare with automatic implicits to recover printing data and names *) let rec merge k l = function | (Name id,imp)::imps -> let l',imp = try list_remove_first (ExplByPos k) l, set_implicit id imp with Not_found -> try list_remove_first (ExplByName id) l, set_implicit id imp with Not_found -> l, None in imp :: merge (k+1) l' imps | (Anonymous,imp)::imps -> None :: merge (k+1) l imps | [] when l = [] -> [] | _ -> match List.hd l with | ExplByName id -> error ("Wrong or not dependent implicit argument name: "^(string_of_id id)) | ExplByPos i -> if i<1 or i>n then error ("Bad implicit argument number: "^(string_of_int i)) else errorlabstrm "" (str "Cannot set implicit argument number " ++ int i ++ str ": it has no name") in merge 1 l autoimps type implicit_status = (* None = Not implicit *) (identifier * implicit_explanation) option type implicits_list = implicit_status list let is_status_implicit = function | None -> false | _ -> true let name_of_implicit = function | None -> anomaly "Not an implicit argument" | Some (id,_) -> id (* [in_ctx] means we now the expected type, [n] is the index of the argument *) let is_inferable_implicit in_ctx n = function | None -> false | Some (_,DepRigid (Hyp p)) -> n >= p | Some (_,DepFlex (Hyp p)) -> false | Some (_,DepFlexAndRigid (_,Hyp q)) -> n >= q | Some (_,DepRigid Conclusion) -> in_ctx | Some (_,DepFlex Conclusion) -> false | Some (_,DepFlexAndRigid (_,Conclusion)) -> false | Some (_,Manual) -> true let positions_of_implicits = let rec aux n = function [] -> [] | Some _ :: l -> n :: aux (n+1) l | None :: l -> aux (n+1) l in aux 1 type strict_flag = bool (* true = strict *) type contextual_flag = bool (* true = contextual *) (*s Constants. *) let compute_constant_implicits flags cst = let env = Global.env () in compute_implicits_auto env flags (Typeops.type_of_constant env cst) (*s Inductives and constructors. Their implicit arguments are stored in an array, indexed by the inductive number, of pairs $(i,v)$ where $i$ are the implicit arguments of the inductive and $v$ the array of implicit arguments of the constructors. *) let compute_mib_implicits flags kn = let env = Global.env () in let mib = lookup_mind kn env in let ar = Array.to_list (Array.map (* No need to lift, arities contain no de Bruijn *) (fun mip -> (Name mip.mind_typename, None, type_of_inductive env (mib,mip))) mib.mind_packets) in let env_ar = push_rel_context ar env in let imps_one_inductive i mip = let ind = (kn,i) in let ar = type_of_inductive env (mib,mip) in ((IndRef ind,compute_implicits_auto env flags ar), Array.mapi (fun j c -> (ConstructRef (ind,j+1),compute_implicits_auto env_ar flags c)) mip.mind_nf_lc) in Array.mapi imps_one_inductive mib.mind_packets let compute_all_mib_implicits flags kn = let imps = compute_mib_implicits flags kn in List.flatten (array_map_to_list (fun (ind,cstrs) -> ind::Array.to_list cstrs) imps) (*s Variables. *) let compute_var_implicits flags id = let env = Global.env () in let (_,_,ty) = lookup_named id env in compute_implicits_auto env flags ty (* Implicits of a global reference. *) let compute_global_implicits flags = function | VarRef id -> compute_var_implicits flags id | ConstRef kn -> compute_constant_implicits flags kn | IndRef (kn,i) -> let ((_,imps),_) = (compute_mib_implicits flags kn).(i) in imps | ConstructRef ((kn,i),j) -> let (_,cimps) = (compute_mib_implicits flags kn).(i) in snd cimps.(j-1) (* Caching implicits *) type implicit_interactive_request = ImplAuto | ImplManual of explicitation list type implicit_discharge_request = | ImplNoDischarge | ImplConstant of constant * implicits_flags | ImplMutualInductive of kernel_name * implicits_flags | ImplInteractive of global_reference * implicits_flags * implicit_interactive_request let implicits_table = ref Refmap.empty let implicits_of_global ref = try Refmap.find ref !implicits_table with Not_found -> [] let cache_implicits_decl (ref,imps) = implicits_table := Refmap.add ref imps !implicits_table let load_implicits _ (_,(_,l)) = List.iter cache_implicits_decl l let cache_implicits o = load_implicits 1 o let subst_implicits_decl subst (r,imps as o) = let r' = fst (subst_global subst r) in if r==r' then o else (r',imps) let subst_implicits (_,subst,(req,l)) = (ImplNoDischarge,list_smartmap (subst_implicits_decl subst) l) let discharge_implicits (_,(req,l)) = match req with | ImplNoDischarge -> None | ImplInteractive (ref,flags,exp) -> Some (ImplInteractive (pop_global_reference ref,flags,exp),l) | ImplConstant (con,flags) -> Some (ImplConstant (pop_con con,flags),l) | ImplMutualInductive (kn,flags) -> Some (ImplMutualInductive (pop_kn kn,flags),l) let rebuild_implicits (req,l) = let l' = match req with | ImplNoDischarge -> assert false | ImplConstant (con,flags) -> [ConstRef con,compute_constant_implicits flags con] | ImplMutualInductive (kn,flags) -> compute_all_mib_implicits flags kn | ImplInteractive (ref,flags,o) -> match o with | ImplAuto -> [ref,compute_global_implicits flags ref] | ImplManual l -> error "Discharge of global manually given implicit arguments not implemented" in (req,l') let (inImplicits, _) = declare_object {(default_object "IMPLICITS") with cache_function = cache_implicits; load_function = load_implicits; subst_function = subst_implicits; classify_function = (fun (_,x) -> Substitute x); discharge_function = discharge_implicits; rebuild_function = rebuild_implicits; export_function = (fun x -> Some x) } let declare_implicits_gen req flags ref = let imps = compute_global_implicits flags ref in add_anonymous_leaf (inImplicits (req,[ref,imps])) let declare_implicits local ref = let flags = (true,!strict_implicit_args,!contextual_implicit_args) in let req = if local then ImplNoDischarge else ImplInteractive(ref,flags,ImplAuto) in declare_implicits_gen req flags ref let declare_var_implicits id = if !implicit_args then declare_implicits_gen ImplNoDischarge (implicit_flags ()) (VarRef id) let declare_constant_implicits con = if !implicit_args then let flags = implicit_flags () in declare_implicits_gen (ImplConstant (con,flags)) flags (ConstRef con) let declare_mib_implicits kn = if !implicit_args then let flags = implicit_flags () in let imps = array_map_to_list (fun (ind,cstrs) -> ind::(Array.to_list cstrs)) (compute_mib_implicits flags kn) in add_anonymous_leaf (inImplicits (ImplMutualInductive (kn,flags),List.flatten imps)) (* Declare manual implicits *) let declare_manual_implicits local ref l = let flags = !implicit_args,!strict_implicit_args,!contextual_implicit_args in let l' = compute_manual_implicits flags ref l in let local = local or (match ref with VarRef _ -> true | _ -> false) in let req = if local then ImplNoDischarge else ImplInteractive(ref,flags,ImplManual l) in add_anonymous_leaf (inImplicits (req,[ref,l'])) (*s Registration as global tables *) let init () = implicits_table := Refmap.empty let freeze () = !implicits_table let unfreeze t = implicits_table := t let _ = Summary.declare_summary "implicits" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init; Summary.survive_module = false; Summary.survive_section = false }