(* $Id$ *) open Names open Generic open Term open Reduction open Constant open Inductive open Typing type implicits = | Impl_auto of int list | Impl_manual of int list | No_impl let implicit_args = ref false let auto_implicits ty = if !implicit_args then let genv = unsafe_env_of_env (Global.env()) in Impl_auto (poly_args genv ty) else No_impl (* Constants. *) let constants_table = ref Spmap.empty let declare_constant_implicits sp = let cb = Global.lookup_constant sp in let imps = auto_implicits cb.const_type.body in constants_table := Spmap.add sp imps !constants_table let declare_constant_manual_implicits sp imps = constants_table := Spmap.add sp (Impl_manual imps) !constants_table let constant_implicits sp = Spmap.find sp !constants_table (* Inductives and constructors. Their implicit arguments are stored in an array, indexed by the inductive number, of pairs $(i,v)$ where $i$ are the implicit arguments of the inductive and $v$ the array of implicit arguments of the constructors. *) let inductives_table = ref Spmap.empty let declare_inductive_implicits sp = let mib = Global.lookup_mind sp in let imps_one_inductive mip = (auto_implicits mip.mind_arity.body, let (_,lc) = decomp_all_DLAMV_name mip.mind_lc in Array.map auto_implicits lc) in let imps = Array.map imps_one_inductive mib.mind_packets in inductives_table := Spmap.add sp imps !inductives_table let inductive_implicits (sp,i) = let imps = Spmap.find sp !inductives_table in fst imps.(i) let constructor_implicits ((sp,i),j) = let imps = Spmap.find sp !inductives_table in (snd imps.(i)).(pred j) (* Registration as global tables and roolback. *) type frozen = implicits Spmap.t let init () = constants_table := Spmap.empty let freeze () = !constants_table let unfreeze ct = constants_table := ct let _ = Summary.declare_summary "names" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init } let rollback f x = let fs = freeze () in try f x with e -> begin unfreeze fs; raise e end