(* $Id$ *) open Pp open Util open Names open Term open Sign open Declarations open Inductive open Reduction open Type_errors open Typeops open Libobject open Lib open Impargs open Indrec type strength = | DischargeAt of dir_path | NeverDischarge let make_strength = function | [] -> NeverDischarge | l -> DischargeAt l let make_strength_0 () = make_strength (Lib.cwd()) let make_strength_1 () = let cwd = Lib.cwd() in let path = try list_firstn (List.length cwd - 1) cwd with Failure _ -> [] in make_strength path let make_strength_2 () = let cwd = Lib.cwd() in let path = try list_firstn (List.length cwd - 2) cwd with Failure _ -> [] in make_strength path (* Section variables. *) type section_variable_entry = | SectionLocalDef of constr | SectionLocalAssum of constr type sticky = bool type variable_declaration = section_variable_entry * strength * sticky let vartab = ref (Spmap.empty : (identifier * variable_declaration) Spmap.t) let _ = Summary.declare_summary "VARIABLE" { Summary.freeze_function = (fun () -> !vartab); Summary.unfreeze_function = (fun ft -> vartab := ft); Summary.init_function = (fun () -> vartab := Spmap.empty); Summary.survive_section = false } let cache_variable (sp,(id,(d,_,_) as vd)) = if Nametab.exists_cci sp then errorlabstrm "cache_variable" [< pr_id (basename sp); 'sTR " already exists" >]; begin match d with (* Fails if not well-typed *) | SectionLocalAssum ty -> Global.push_named_assum (id,ty) | SectionLocalDef c -> Global.push_named_def (id,c) end; Nametab.push sp (VarRef sp); vartab := Spmap.add sp vd !vartab let (in_variable, out_variable) = let od = { cache_function = cache_variable; load_function = (fun _ -> ()); open_function = (fun _ -> ()); export_function = (fun x -> None) } in declare_object ("VARIABLE", od) let declare_variable id obj = let sp = add_leaf id CCI (in_variable (id,obj)) in if is_implicit_args() then declare_var_implicits sp (* Parameters. *) let cache_parameter (sp,c) = if Nametab.exists_cci sp then errorlabstrm "cache_parameter" [< pr_id (basename sp); 'sTR " already exists" >]; Global.add_parameter sp c; Nametab.push sp (ConstRef sp) let load_parameter _ = () let open_parameter (sp,_) = () (* Nametab.push sp (ConstRef sp)*) let export_parameter x = Some x let (in_parameter, out_parameter) = let od = { cache_function = cache_parameter; load_function = load_parameter; open_function = open_parameter; export_function = export_parameter } in declare_object ("PARAMETER", od) let declare_parameter id c = let sp = add_leaf id CCI (in_parameter c) in if is_implicit_args() then declare_constant_implicits sp (* Constants. *) type constant_declaration_type = | ConstantEntry of constant_entry | ConstantRecipe of Cooking.recipe type constant_declaration = constant_declaration_type * strength let csttab = ref (Spmap.empty : strength Spmap.t) let _ = Summary.declare_summary "CONSTANT" { Summary.freeze_function = (fun () -> !csttab); Summary.unfreeze_function = (fun ft -> csttab := ft); Summary.init_function = (fun () -> csttab := Spmap.empty); Summary.survive_section = false } let cache_constant (sp,(cdt,stre)) = if Nametab.exists_cci sp then errorlabstrm "cache_constant" [< pr_id (basename sp); 'sTR " already exists" >] ; begin match cdt with | ConstantEntry ce -> Global.add_constant sp ce | ConstantRecipe r -> Global.add_discharged_constant sp r end; Nametab.push sp (ConstRef sp); csttab := Spmap.add sp stre !csttab let load_constant (sp,(ce,stre)) = csttab := Spmap.add sp stre !csttab let open_constant (sp,_) = () (* Nametab.push sp (ConstRef sp)*) let export_constant x = Some x let (in_constant, out_constant) = let od = { cache_function = cache_constant; load_function = load_constant; open_function = open_constant; export_function = export_constant } in declare_object ("CONSTANT", od) let declare_constant id cd = let sp = add_leaf id CCI (in_constant cd) in if is_implicit_args() then declare_constant_implicits sp (* Inductives. *) let inductive_names sp mie = let names, _ = List.fold_left (fun (names, n) (id,_,cnames,_) -> let indsp = (sp,n) in let names, _ = List.fold_left (fun (names, p) id -> let sp = Names.make_path (dirpath sp) id CCI in ((sp, ConstructRef (indsp,p)) :: names, p+1)) (names, 1) cnames in let sp = Names.make_path (dirpath sp) id CCI in ((sp, IndRef indsp) :: names, n+1)) ([], 0) mie.mind_entry_inds in names let push_inductive_names sp mie = let _ = List.fold_left (fun n (id,_,cnames,_) -> let indsp = (sp,n) in let _ = List.fold_left (fun p id -> let sp = Names.make_path (dirpath sp) id CCI in Nametab.push sp (ConstructRef (indsp,p)); (p+1)) 1 cnames in let sp = Names.make_path (dirpath sp) id CCI in Nametab.push sp (IndRef indsp); n+1) 0 mie.mind_entry_inds in () let check_exists_inductive (sp,_) = if Nametab.exists_cci sp then errorlabstrm "cache_inductive" [< pr_id (basename sp); 'sTR " already exists" >] let cache_inductive (sp,mie) = let names = inductive_names sp mie in List.iter check_exists_inductive names; Global.add_mind sp mie; List.iter (fun (sp, ref) -> Nametab.push sp ref) names let load_inductive _ = () let open_inductive (sp,mie) = () (* push_inductive_names sp mie *) let export_inductive x = Some x let (in_inductive, out_inductive) = let od = { cache_function = cache_inductive; load_function = load_inductive; open_function = open_inductive; export_function = export_inductive } in declare_object ("INDUCTIVE", od) let declare_mind mie = let id = match mie.mind_entry_inds with | (id,_,_,_)::_ -> id | [] -> anomaly "cannot declare an empty list of inductives" in let sp = add_leaf id CCI (in_inductive mie) in if is_implicit_args() then declare_mib_implicits sp; sp (*s Test and access functions. *) let is_constant sp = try let _ = Global.lookup_constant sp in true with Not_found -> false let constant_strength sp = Spmap.find sp !csttab let constant_or_parameter_strength sp = try constant_strength sp with Not_found -> NeverDischarge let get_variable sp = let (id,(_,str,sticky)) = Spmap.find sp !vartab in let (c,ty) = Global.lookup_named id in ((id,c,ty),str,sticky) let variable_strength qid = match Nametab.locate qid with | VarRef sp -> let _,(_,str,_) = Spmap.find sp !vartab in str | _ -> anomaly "variable_strength: not the reference to a variable" (* Global references. *) let first f v = let n = Array.length v in let rec look_for i = if i = n then raise Not_found; try f i v.(i) with Not_found -> look_for (succ i) in look_for 0 let mind_oper_of_id sp id mib = first (fun tyi mip -> if id = mip.mind_typename then IndRef (sp,tyi) else first (fun cj cid -> if id = cid then ConstructRef ((sp,tyi),succ cj) else raise Not_found) mip.mind_consnames) mib.mind_packets let context_of_global_reference sigma env = function | EvarRef n -> (Evd.map sigma n).Evd.evar_hyps | VarRef sp -> [] (* Hum !, pas correct *) | ConstRef sp -> (Environ.lookup_constant sp env).const_hyps | IndRef (sp,_) -> (Environ.lookup_mind sp env).mind_hyps | ConstructRef ((sp,_),_) -> (Environ.lookup_mind sp env).mind_hyps (* let global_sp_operator env sp id = try with Not_found -> let mib = mind_oper_of_id sp id mib, mib.mind_hyps *) let occur_decl env (id,c,t) hyps = try let (c',t') = Sign.lookup_id id hyps in let matching_bodies = match c,c' with | None, _ -> true | Some c, None -> false | Some c, Some c' -> is_conv env Evd.empty c c' in let matching_types = is_conv env Evd.empty (body_of_type t) (body_of_type t') in matching_types & matching_bodies with Not_found -> false (* let find_common_hyps_then_abstract c env hyps' hyps = snd (fold_named_context_both_sides (fun (env,c) (id,_,_ as d) hyps -> if occur_decl env d hyps' then (Environ.push_named_decl d env,c) else let hyps'' = List.rev (d :: hyps) in (env, Environ.it_mkNamedLambda_or_LetIn c hyps'')) hyps (env,c)) *) let rec quantify_extra_hyps c = function | (id,None,t)::hyps -> mkNamedLambda id t (quantify_extra_hyps c hyps) | (_,Some _,_)::hyps -> quantify_extra_hyps c hyps | [] -> c let rec find_common_hyps_then_abstract c env hyps' = function | (id,_,_ as d) :: hyps when occur_decl env d hyps' -> find_common_hyps_then_abstract c (Environ.push_named_decl d env) hyps' hyps | hyps -> quantify_extra_hyps c hyps let find_common_hyps_then_abstract c env hyps' hyps = find_common_hyps_then_abstract c env hyps' (List.rev hyps) let current_section_context () = let current = Spmap.fold (fun _ (id,_) hyps -> id::hyps) !vartab [] in List.fold_right (fun (id,_,_ as d) hyps -> if List.mem id current then d::hyps else hyps) (Global.named_context ()) [] let extract_instance ref args = let hyps = context_of_global_reference Evd.empty (Global.env ()) ref in let hyps0 = current_section_context () in let na = Array.length args in let rec peel n acc = function | (_,None,_ as d)::hyps -> if List.mem d hyps0 then peel (n-1) acc hyps else peel (n-1) (args.(n)::acc) hyps | (_,Some _,_)::hyps -> peel n acc hyps | [] -> Array.of_list acc in peel (na-1) [] hyps let constr_of_reference sigma env ref = let hyps = context_of_global_reference sigma env ref in let hyps0 = current_section_context () in let env0 = Environ.reset_context env in let args = instance_from_named_context hyps in let body = match ref with | EvarRef n -> mkEvar (n,Array.of_list args) | VarRef sp -> mkVar (basename sp) | ConstRef sp -> mkConst (sp,Array.of_list args) | ConstructRef sp -> mkMutConstruct (sp,Array.of_list args) | IndRef sp -> mkMutInd (sp,Array.of_list args) in find_common_hyps_then_abstract body env0 hyps0 hyps let construct_absolute_reference env sp = let ref = Nametab.locate (qualid_of_sp sp) in constr_of_reference Evd.empty env ref let construct_qualified_reference env qid = let ref = Nametab.locate qid in constr_of_reference Evd.empty env ref let construct_reference env kind id = try let ref = Nametab.sp_of_id kind id in constr_of_reference Evd.empty env ref with Not_found -> mkVar (let _ = Environ.lookup_named id env in id) let global_qualified_reference qid = construct_qualified_reference (Global.env()) qid let global_absolute_reference sp = construct_absolute_reference (Global.env()) sp let global_reference kind id = construct_reference (Global.env()) kind id (* let global env id = try let _ = lookup_glob id (Environ.context env) in mkVar id with Not_found -> global_reference CCI id *) let dirpath_of_global = function | EvarRef n -> ["evar"] | VarRef sp -> dirpath sp | ConstRef sp -> dirpath sp | IndRef (sp,_) -> dirpath sp | ConstructRef ((sp,_),_) -> dirpath sp let is_global id = try let osp = Nametab.locate (make_qualid [] (string_of_id id)) in list_prefix_of (dirpath_of_global osp) (Lib.cwd()) with Not_found -> false let path_of_constructor_path ((sp,tyi),ind) = let mib = Global.lookup_mind sp in let mip = mind_nth_type_packet mib tyi in let (pa,_,k) = repr_path sp in Names.make_path pa (mip.mind_consnames.(ind-1)) k let path_of_inductive_path (sp,tyi) = if tyi = 0 then sp else let mib = Global.lookup_mind sp in let mip = mind_nth_type_packet mib tyi in let (pa,_,k) = repr_path sp in Names.make_path pa (mip.mind_typename) k (* Eliminations. *) let eliminations = [ (prop,"_ind") ; (spec,"_rec") ; (types,"_rect") ] let elimination_suffix = function | Type _ -> "_rect" | Prop Null -> "_ind" | Prop Pos -> "_rec" let declare_eliminations sp i = let mib = Global.lookup_mind sp in let ids = ids_of_named_context mib.mind_hyps in if not (list_subset ids (ids_of_named_context (Global.named_context ()))) then error ("Declarations of elimination scheme outside the section "^ "of the inductive definition is not implemented"); let ctxt = instance_from_named_context mib.mind_hyps in let mispec = Global.lookup_mind_specif ((sp,i),Array.of_list ctxt) in let mindstr = string_of_id (mis_typename mispec) in let declare na c = declare_constant (id_of_string na) (ConstantEntry { const_entry_body = c; const_entry_type = None }, NeverDischarge); if Options.is_verbose() then pPNL [< 'sTR na; 'sTR " is defined" >] in let env = Global.env () in let sigma = Evd.empty in let elim_scheme = build_indrec env sigma mispec in let npars = mis_nparams mispec in let make_elim s = instanciate_indrec_scheme s npars elim_scheme in let kelim = mis_kelim mispec in List.iter (fun (sort,suff) -> if List.mem sort kelim then declare (mindstr^suff) (make_elim sort)) eliminations (* Look up function for the default elimination constant *) let lookup_eliminator env path s = let s = (string_of_id (basename path))^(elimination_suffix s) in construct_reference env (kind_of_path path) (id_of_string s)