(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ()) let xml_declare_constant = ref (fun (sp:bool * constant)-> ()) let xml_declare_inductive = ref (fun (sp:bool * object_name) -> ()) let if_xml f x = if !Flags.xml_export then f x else () let set_xml_declare_variable f = xml_declare_variable := if_xml f let set_xml_declare_constant f = xml_declare_constant := if_xml f let set_xml_declare_inductive f = xml_declare_inductive := if_xml f let cache_hook = ref ignore let add_cache_hook f = cache_hook := f (** Declaration of section variables and local definitions *) type section_variable_entry = | SectionLocalDef of constr * types option * bool (* opacity *) | SectionLocalAssum of types * bool (* Implicit status *) type variable_declaration = dir_path * section_variable_entry * logical_kind let cache_variable ((sp,_),o) = match o with | Inl cst -> Global.add_constraints cst | Inr (id,(p,d,mk)) -> (* Constr raisonne sur les noms courts *) if variable_exists id then errorlabstrm "cache_variable" (pr_id id ++ str " already exists"); let impl,opaq,cst = match d with (* Fails if not well-typed *) | SectionLocalAssum (ty, impl) -> let cst = Global.push_named_assum (id,ty) in let impl = if impl then Lib.Implicit else Lib.Explicit in impl, true, cst | SectionLocalDef (c,t,opaq) -> let cst = Global.push_named_def (id,c,t) in Lib.Explicit, opaq, cst in Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id); add_section_variable id impl; Dischargedhypsmap.set_discharged_hyps sp []; add_variable_data id (p,opaq,cst,mk) let discharge_variable (_,o) = match o with | Inr (id,_) -> Some (Inl (variable_constraints id)) | Inl _ -> Some o let (inVariable,_) = declare_object { (default_object "VARIABLE") with cache_function = cache_variable; discharge_function = discharge_variable; classify_function = (fun _ -> Dispose) } (* for initial declaration *) let declare_variable id obj = let oname = add_leaf id (inVariable (Inr (id,obj))) in declare_var_implicits id; Notation.declare_ref_arguments_scope (VarRef id); Heads.declare_head (EvalVarRef id); !xml_declare_variable oname; oname (** Declaration of constants and parameters *) type constant_declaration = constant_entry * logical_kind (* At load-time, the segment starting from the module name to the discharge *) (* section (if Remark or Fact) is needed to access a construction *) let load_constant i ((sp,kn),(_,_,kind)) = if Nametab.exists_cci sp then errorlabstrm "cache_constant" (pr_id (basename sp) ++ str " already exists"); Nametab.push (Nametab.Until i) sp (ConstRef (constant_of_kn kn)); add_constant_kind (constant_of_kn kn) kind (* Opening means making the name without its module qualification available *) let open_constant i ((sp,kn),_) = Nametab.push (Nametab.Exactly i) sp (ConstRef (constant_of_kn kn)) let cache_constant ((sp,kn),(cdt,dhyps,kind)) = let id = basename sp in let _,dir,_ = repr_kn kn in if variable_exists id or Nametab.exists_cci sp then errorlabstrm "cache_constant" (pr_id id ++ str " already exists"); let kn' = Global.add_constant dir id cdt in assert (kn' = constant_of_kn kn); Nametab.push (Nametab.Until 1) sp (ConstRef (constant_of_kn kn)); add_section_constant kn' (Global.lookup_constant kn').const_hyps; Dischargedhypsmap.set_discharged_hyps sp dhyps; add_constant_kind (constant_of_kn kn) kind; !cache_hook sp let discharged_hyps kn sechyps = let (_,dir,_) = repr_kn kn in let args = Array.to_list (instance_from_variable_context sechyps) in List.rev (List.map (Libnames.make_path dir) args) let discharge_constant ((sp,kn),(cdt,dhyps,kind)) = let con = constant_of_kn kn in let cb = Global.lookup_constant con in let repl = replacement_context () in let sechyps = section_segment_of_constant con in let recipe = { d_from=cb; d_modlist=repl; d_abstract=named_of_variable_context sechyps } in Some (GlobalRecipe recipe,(discharged_hyps kn sechyps)@dhyps,kind) (* Hack to reduce the size of .vo: we keep only what load/open needs *) let dummy_constant_entry = ConstantEntry (ParameterEntry (mkProp,false)) let dummy_constant (ce,_,mk) = dummy_constant_entry,[],mk let classify_constant cst = Substitute (dummy_constant cst) let (inConstant,_) = declare_object { (default_object "CONSTANT") with cache_function = cache_constant; load_function = load_constant; open_function = open_constant; classify_function = classify_constant; subst_function = ident_subst_function; discharge_function = discharge_constant } let hcons_constant_declaration = function | DefinitionEntry ce when !Flags.hash_cons_proofs -> let (hcons1_constr,_) = hcons_constr (hcons_names()) in DefinitionEntry { const_entry_body = hcons1_constr ce.const_entry_body; const_entry_type = Option.map hcons1_constr ce.const_entry_type; const_entry_opaque = ce.const_entry_opaque; const_entry_boxed = ce.const_entry_boxed } | cd -> cd let declare_constant_common id dhyps (cd,kind) = let (sp,kn) = add_leaf id (inConstant (cd,dhyps,kind)) in let c = constant_of_kn kn in declare_constant_implicits c; Heads.declare_head (EvalConstRef c); Notation.declare_ref_arguments_scope (ConstRef c); c let declare_constant_gen internal id (cd,kind) = let cd = hcons_constant_declaration cd in let kn = declare_constant_common id [] (ConstantEntry cd,kind) in !xml_declare_constant (internal,kn); kn let declare_internal_constant = declare_constant_gen true let declare_constant = declare_constant_gen false (** Declaration of inductive blocks *) let declare_inductive_argument_scopes kn mie = list_iter_i (fun i {mind_entry_consnames=lc} -> Notation.declare_ref_arguments_scope (IndRef (kn,i)); for j=1 to List.length lc do Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j)); done) mie.mind_entry_inds let inductive_names sp kn mie = let (dp,_) = repr_path sp in let names, _ = List.fold_left (fun (names, n) ind -> let ind_p = (kn,n) in let names, _ = List.fold_left (fun (names, p) l -> let sp = Libnames.make_path dp l in ((sp, ConstructRef (ind_p,p)) :: names, p+1)) (names, 1) ind.mind_entry_consnames in let sp = Libnames.make_path dp ind.mind_entry_typename in ((sp, IndRef ind_p) :: names, n+1)) ([], 0) mie.mind_entry_inds in names let check_exists_inductive (sp,_) = (if variable_exists (basename sp) then errorlabstrm "" (pr_id (basename sp) ++ str " already exists")); if Nametab.exists_cci sp then let (_,id) = repr_path sp in errorlabstrm "" (pr_id id ++ str " already exists") let load_inductive i ((sp,kn),(_,mie)) = let names = inductive_names sp kn mie in List.iter check_exists_inductive names; List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref ) names let open_inductive i ((sp,kn),(_,mie)) = let names = inductive_names sp kn mie in List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names let cache_inductive ((sp,kn),(dhyps,mie)) = let names = inductive_names sp kn mie in List.iter check_exists_inductive names; let id = basename sp in let _,dir,_ = repr_kn kn in let kn' = Global.add_mind dir id mie in assert (kn'=kn); add_section_kn kn (Global.lookup_mind kn').mind_hyps; Dischargedhypsmap.set_discharged_hyps sp dhyps; List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names; List.iter (fun (sp,_) -> !cache_hook sp) (inductive_names sp kn mie) let discharge_inductive ((sp,kn),(dhyps,mie)) = let mie = Global.lookup_mind kn in let repl = replacement_context () in let sechyps = section_segment_of_mutual_inductive kn in Some (discharged_hyps kn sechyps, Discharge.process_inductive (named_of_variable_context sechyps) repl mie) let dummy_one_inductive_entry mie = { mind_entry_typename = mie.mind_entry_typename; mind_entry_arity = mkProp; mind_entry_consnames = mie.mind_entry_consnames; mind_entry_lc = [] } (* Hack to reduce the size of .vo: we keep only what load/open needs *) let dummy_inductive_entry (_,m) = ([],{ mind_entry_params = []; mind_entry_record = false; mind_entry_finite = true; mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds }) let (inInductive,_) = declare_object {(default_object "INDUCTIVE") with cache_function = cache_inductive; load_function = load_inductive; open_function = open_inductive; classify_function = (fun a -> Substitute (dummy_inductive_entry a)); subst_function = ident_subst_function; discharge_function = discharge_inductive } (* for initial declaration *) let declare_mind isrecord mie = let id = match mie.mind_entry_inds with | ind::_ -> ind.mind_entry_typename | [] -> anomaly "cannot declare an empty list of inductives" in let (sp,kn as oname) = add_leaf id (inInductive ([],mie)) in declare_mib_implicits kn; declare_inductive_argument_scopes kn mie; !xml_declare_inductive (isrecord,oname); oname