(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* = 'a' && c <= 'z') or (c >= 'A' && c <= 'Z') or (c >= '\248' && c <= '\255') or (c >= '\192' && c <= '\214') or (c >= '\216' && c <= '\246') let is_digit c = (c >= '0' && c <= '9') let is_ident_tail c = is_letter c or is_digit c or c = '\'' or c = '_' (* Strings *) let explode s = let rec explode_rec n = if n >= String.length s then [] else String.make 1 (String.get s n) :: explode_rec (succ n) in explode_rec 0 let implode sl = String.concat "" sl (* substring searching... *) (* gdzie = where, co = what *) (* gdzie=gdzie(string) gl=gdzie(length) gi=gdzie(index) *) let rec is_sub gdzie gl gi co cl ci = (ci>=cl) || ((String.unsafe_get gdzie gi = String.unsafe_get co ci) && (is_sub gdzie gl (gi+1) co cl (ci+1))) let rec raw_str_index i gdzie l c co cl = let i' = String.index_from gdzie i c in if (i'+cl <= l) && (is_sub gdzie l i' co cl 0) then i' else raw_str_index (i'+1) gdzie l c co cl let string_index_from gdzie i co = if co="" then i else raw_str_index i gdzie (String.length gdzie) (String.unsafe_get co 0) co (String.length co) let string_string_contains ~where ~what = try let _ = string_index_from where 0 what in true with Not_found -> false let plural n s = if n>1 then s^"s" else s let ordinal n = let s = match n mod 10 with 1 -> "st" | 2 -> "nd" | 3 -> "rd" | _ -> "th" in string_of_int n ^ s (* string parsing *) let parse_loadpath s = let len = String.length s in let rec decoupe_dirs n = try let pos = String.index_from s n '/' in if pos = n then invalid_arg "parse_loadpath: find an empty dir in loadpath"; let dir = String.sub s n (pos-n) in dir :: (decoupe_dirs (succ pos)) with | Not_found -> [String.sub s n (len-n)] in if len = 0 then [] else decoupe_dirs 0 module Stringset = Set.Make(struct type t = string let compare = compare end) module Stringmap = Map.Make(struct type t = string let compare = compare end) (* Lists *) let list_intersect l1 l2 = List.filter (fun x -> List.mem x l2) l1 let list_union l1 l2 = let rec urec = function | [] -> l2 | a::l -> if List.mem a l2 then urec l else a::urec l in urec l1 let list_unionq l1 l2 = let rec urec = function | [] -> l2 | a::l -> if List.memq a l2 then urec l else a::urec l in urec l1 let list_subtract l1 l2 = if l2 = [] then l1 else List.filter (fun x -> not (List.mem x l2)) l1 let list_subtractq l1 l2 = if l2 = [] then l1 else List.filter (fun x -> not (List.memq x l2)) l1 let list_chop n l = let rec chop_aux acc = function | (0, l2) -> (List.rev acc, l2) | (n, (h::t)) -> chop_aux (h::acc) (pred n, t) | (_, []) -> failwith "list_chop" in chop_aux [] (n,l) let list_tabulate f len = let rec tabrec n = if n = len then [] else (f n)::(tabrec (n+1)) in tabrec 0 let list_assign l n e = let rec assrec stk = function | ((h::t), 0) -> List.rev_append stk (e::t) | ((h::t), n) -> assrec (h::stk) (t, n-1) | ([], _) -> failwith "list_assign" in assrec [] (l,n) let rec list_smartmap f l = match l with [] -> l | h::tl -> let h' = f h and tl' = list_smartmap f tl in if h'==h && tl'==tl then l else h'::tl' let list_map_left f = (* ensures the order in case of side-effects *) let rec map_rec = function | [] -> [] | x::l -> let v = f x in v :: map_rec l in map_rec let list_map_i f = let rec map_i_rec i = function | [] -> [] | x::l -> let v = f i x in v :: map_i_rec (i+1) l in map_i_rec let list_map2_i f i l1 l2 = let rec map_i i = function | ([], []) -> [] | ((h1::t1), (h2::t2)) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2) | (_, _) -> invalid_arg "map2_i" in map_i i (l1,l2) let list_map3 f l1 l2 l3 = let rec map = function | ([], [], []) -> [] | ((h1::t1), (h2::t2), (h3::t3)) -> let v = f h1 h2 h3 in v::map (t1,t2,t3) | (_, _, _) -> invalid_arg "map3" in map (l1,l2,l3) let list_map4 f l1 l2 l3 l4 = let rec map = function | ([], [], [], []) -> [] | ((h1::t1), (h2::t2), (h3::t3), (h4::t4)) -> let v = f h1 h2 h3 h4 in v::map (t1,t2,t3,t4) | (_, _, _, _) -> invalid_arg "map4" in map (l1,l2,l3,l4) let list_index x = let rec index_x n = function | y::l -> if x = y then n else index_x (succ n) l | [] -> raise Not_found in index_x 1 let list_index0 x l = list_index x l - 1 let list_unique_index x = let rec index_x n = function | y::l -> if x = y then if List.mem x l then raise Not_found else n else index_x (succ n) l | [] -> raise Not_found in index_x 1 let list_fold_left_i f = let rec it_list_f i a = function | [] -> a | b::l -> it_list_f (i+1) (f i a b) l in it_list_f (* [list_fold_right_and_left f [a1;...;an] hd = f (f (... (f (f hd an [an-1;...;a1]) an-1 [an-2;...;a1]) ...) a2 [a1]) a1 []] *) let rec list_fold_right_and_left f l hd = let rec aux tl = function | [] -> hd | a::l -> let hd = aux (a::tl) l in f hd a tl in aux [] l let list_iter3 f l1 l2 l3 = let rec iter = function | ([], [], []) -> () | ((h1::t1), (h2::t2), (h3::t3)) -> f h1 h2 h3; iter (t1,t2,t3) | (_, _, _) -> invalid_arg "map3" in iter (l1,l2,l3) let list_iter_i f l = list_fold_left_i (fun i _ x -> f i x) 0 () l let list_for_all_i p = let rec for_all_p i = function | [] -> true | a::l -> p i a && for_all_p (i+1) l in for_all_p let list_except x l = List.filter (fun y -> not (x = y)) l let list_remove = list_except (* Alias *) let rec list_remove_first a = function | b::l when a = b -> l | b::l -> b::list_remove_first a l | [] -> raise Not_found let list_add_set x l = if List.mem x l then l else x::l let list_eq_set l1 l2 = let rec aux l1 = function | [] -> l1 = [] | a::l2 -> aux (list_remove_first a l1) l2 in try aux l1 l2 with Not_found -> false let list_for_all2eq f l1 l2 = try List.for_all2 f l1 l2 with Failure _ -> false let list_map_i f = let rec map_i_rec i = function | [] -> [] | x::l -> let v = f i x in v::map_i_rec (i+1) l in map_i_rec let rec list_sep_last = function | [] -> failwith "sep_last" | hd::[] -> (hd,[]) | hd::tl -> let (l,tl) = list_sep_last tl in (l,hd::tl) let list_try_find_i f = let rec try_find_f n = function | [] -> failwith "try_find_i" | h::t -> try f n h with Failure _ -> try_find_f (n+1) t in try_find_f let list_try_find f = let rec try_find_f = function | [] -> failwith "try_find" | h::t -> try f h with Failure _ -> try_find_f t in try_find_f let list_uniquize l = let visited = Hashtbl.create 23 in let rec aux acc = function | h::t -> if Hashtbl.mem visited h then aux acc t else begin Hashtbl.add visited h h; aux (h::acc) t end | [] -> List.rev acc in aux [] l let rec list_distinct l = let visited = Hashtbl.create 23 in let rec loop = function | h::t -> if Hashtbl.mem visited h then false else begin Hashtbl.add visited h h; loop t end | [] -> true in loop l let rec list_merge_uniq cmp l1 l2 = match l1, l2 with | [], l2 -> l2 | l1, [] -> l1 | h1 :: t1, h2 :: t2 -> let c = cmp h1 h2 in if c = 0 then h1 :: list_merge_uniq cmp t1 t2 else if c <= 0 then h1 :: list_merge_uniq cmp t1 l2 else h2 :: list_merge_uniq cmp l1 t2 let rec list_duplicates = function | [] -> [] | x::l -> let l' = list_duplicates l in if List.mem x l then list_add_set x l' else l' let rec list_filter2 f = function | [], [] as p -> p | d::dp, l::lp -> let (dp',lp' as p) = list_filter2 f (dp,lp) in if f d l then d::dp', l::lp' else p | _ -> invalid_arg "list_filter2" let list_subset l1 l2 = let t2 = Hashtbl.create 151 in List.iter (fun x -> Hashtbl.add t2 x ()) l2; let rec look = function | [] -> true | x::ll -> try Hashtbl.find t2 x; look ll with Not_found -> false in look l1 let list_splitby p = let rec splitby_loop x y = match y with | [] -> ([],[]) | (a::l) -> if (p a) then (x,y) else (splitby_loop (x@[a]) l) in splitby_loop [] let rec list_split3 = function | [] -> ([], [], []) | (x,y,z)::l -> let (rx, ry, rz) = list_split3 l in (x::rx, y::ry, z::rz) let rec list_insert_in_class f a = function | [] -> [[a]] | (b::_ as l)::classes when f a b -> (a::l)::classes | l::classes -> l :: list_insert_in_class f a classes let list_partition_by f l = List.fold_right (list_insert_in_class f) l [] let list_firstn n l = let rec aux acc = function | (0, l) -> List.rev acc | (n, (h::t)) -> aux (h::acc) (pred n, t) | _ -> failwith "firstn" in aux [] (n,l) let rec list_last = function | [] -> failwith "list_last" | [x] -> x | _ :: l -> list_last l let list_lastn n l = let len = List.length l in let rec aux m l = if m = n then l else aux (m - 1) (List.tl l) in if len < n then failwith "lastn" else aux len l let rec list_skipn n l = match n,l with | 0, _ -> l | _, [] -> failwith "list_fromn" | n, _::l -> list_skipn (pred n) l let rec list_addn n x l = if n = 0 then l else x :: (list_addn (pred n) x l) let list_prefix_of prefl l = let rec prefrec = function | (h1::t1, h2::t2) -> h1 = h2 && prefrec (t1,t2) | ([], _) -> true | (_, _) -> false in prefrec (prefl,l) let list_drop_prefix p l = (* if l=p++t then return t else l *) let rec list_drop_prefix_rec = function | ([], tl) -> Some tl | (_, []) -> None | (h1::tp, h2::tl) -> if h1 = h2 then list_drop_prefix_rec (tp,tl) else None in match list_drop_prefix_rec (p,l) with | Some r -> r | None -> l let list_map_append f l = List.flatten (List.map f l) let list_join_map = list_map_append (* Alias *) let list_map_append2 f l1 l2 = List.flatten (List.map2 f l1 l2) let list_share_tails l1 l2 = let rec shr_rev acc = function | ((x1::l1), (x2::l2)) when x1 == x2 -> shr_rev (x1::acc) (l1,l2) | (l1,l2) -> (List.rev l1, List.rev l2, acc) in shr_rev [] (List.rev l1, List.rev l2) let rec list_fold_map f e = function | [] -> (e,[]) | h::t -> let e',h' = f e h in let e'',t' = list_fold_map f e' t in e'',h'::t' (* (* tail-recursive version of the above function *) let list_fold_map f e l = let g (e,b') h = let (e',h') = f e h in (e',h'::b') in let (e',lrev) = List.fold_left g (e,[]) l in (e',List.rev lrev) *) (* The same, based on fold_right, with the effect accumulated on the right *) let list_fold_map' f l e = List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e) let list_map_assoc f = List.map (fun (x,a) -> (x,f a)) (* Specification: - =p= is set equality (double inclusion) - f such that \forall l acc, (f l acc) =p= append (f l []) acc - let g = fun x -> f x [] in - union_map f l acc =p= append (flatten (map g l)) acc *) let list_union_map f l acc = List.fold_left (fun x y -> f y x) acc l (* A generic cartesian product: for any operator (**), [list_cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]], and so on if there are more elements in the lists. *) let rec list_cartesian op l1 l2 = list_map_append (fun x -> List.map (op x) l2) l1 (* [list_cartesians] is an n-ary cartesian product: it iterates [list_cartesian] over a list of lists. *) let list_cartesians op init ll = List.fold_right (list_cartesian op) ll [init] (* list_combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *) let list_combinations l = list_cartesians (fun x l -> x::l) [] l (* Arrays *) let array_exists f v = let rec exrec = function | -1 -> false | n -> (f v.(n)) || (exrec (n-1)) in exrec ((Array.length v)-1) let array_for_all f v = let rec allrec = function | -1 -> true | n -> (f v.(n)) && (allrec (n-1)) in allrec ((Array.length v)-1) let array_for_all2 f v1 v2 = let rec allrec = function | -1 -> true | n -> (f v1.(n) v2.(n)) && (allrec (n-1)) in let lv1 = Array.length v1 in lv1 = Array.length v2 && allrec (pred lv1) let array_for_all3 f v1 v2 v3 = let rec allrec = function | -1 -> true | n -> (f v1.(n) v2.(n) v3.(n)) && (allrec (n-1)) in let lv1 = Array.length v1 in lv1 = Array.length v2 && lv1 = Array.length v3 && allrec (pred lv1) let array_for_all4 f v1 v2 v3 v4 = let rec allrec = function | -1 -> true | n -> (f v1.(n) v2.(n) v3.(n) v4.(n)) && (allrec (n-1)) in let lv1 = Array.length v1 in lv1 = Array.length v2 && lv1 = Array.length v3 && lv1 = Array.length v4 && allrec (pred lv1) let array_hd v = match Array.length v with | 0 -> failwith "array_hd" | _ -> v.(0) let array_tl v = match Array.length v with | 0 -> failwith "array_tl" | n -> Array.sub v 1 (pred n) let array_last v = match Array.length v with | 0 -> failwith "array_last" | n -> v.(pred n) let array_cons e v = Array.append [|e|] v let array_rev t = let n=Array.length t in if n <=0 then () else let tmp=ref t.(0) in for i=0 to pred (n/2) do tmp:=t.((pred n)-i); t.((pred n)-i)<- t.(i); t.(i)<- !tmp done let array_fold_right_i f v a = let rec fold a n = if n=0 then a else let k = n-1 in fold (f k v.(k) a) k in fold a (Array.length v) let array_fold_left_i f v a = let n = Array.length a in let rec fold i v = if i = n then v else fold (succ i) (f i v a.(i)) in fold 0 v let array_fold_right2 f v1 v2 a = let lv1 = Array.length v1 in let rec fold a n = if n=0 then a else let k = n-1 in fold (f v1.(k) v2.(k) a) k in if Array.length v2 <> lv1 then invalid_arg "array_fold_right2"; fold a lv1 let array_fold_left2 f a v1 v2 = let lv1 = Array.length v1 in let rec fold a n = if n >= lv1 then a else fold (f a v1.(n) v2.(n)) (succ n) in if Array.length v2 <> lv1 then invalid_arg "array_fold_left2"; fold a 0 let array_fold_left2_i f a v1 v2 = let lv1 = Array.length v1 in let rec fold a n = if n >= lv1 then a else fold (f n a v1.(n) v2.(n)) (succ n) in if Array.length v2 <> lv1 then invalid_arg "array_fold_left2"; fold a 0 let array_fold_left_from n f a v = let rec fold a n = if n >= Array.length v then a else fold (f a v.(n)) (succ n) in fold a n let array_fold_right_from n f v a = let rec fold n = if n >= Array.length v then a else f v.(n) (fold (succ n)) in fold n let array_app_tl v l = if Array.length v = 0 then invalid_arg "array_app_tl"; array_fold_right_from 1 (fun e l -> e::l) v l let array_list_of_tl v = if Array.length v = 0 then invalid_arg "array_list_of_tl"; array_fold_right_from 1 (fun e l -> e::l) v [] let array_map_to_list f v = List.map f (Array.to_list v) let array_chop n v = let vlen = Array.length v in if n > vlen then failwith "array_chop"; (Array.sub v 0 n, Array.sub v n (vlen-n)) exception Local of int (* If none of the elements is changed by f we return ar itself. The for loop looks for the first such an element. If found it is temporarily stored in a ref and the new array is produced, but f is not re-applied to elements that are already checked *) let array_smartmap f ar = let ar_size = Array.length ar in let aux = ref None in try for i = 0 to ar_size-1 do let a = ar.(i) in let a' = f a in if a != a' then (* pointer (in)equality *) begin aux := Some a'; raise (Local i) end done; ar with Local i -> let copy j = if j a' | None -> failwith "Error" else f (ar.(j)) in Array.init ar_size copy let array_map2 f v1 v2 = if Array.length v1 <> Array.length v2 then invalid_arg "array_map2"; if Array.length v1 == 0 then [| |] else begin let res = Array.create (Array.length v1) (f v1.(0) v2.(0)) in for i = 1 to pred (Array.length v1) do res.(i) <- f v1.(i) v2.(i) done; res end let array_map2_i f v1 v2 = if Array.length v1 <> Array.length v2 then invalid_arg "array_map2"; if Array.length v1 == 0 then [| |] else begin let res = Array.create (Array.length v1) (f 0 v1.(0) v2.(0)) in for i = 1 to pred (Array.length v1) do res.(i) <- f i v1.(i) v2.(i) done; res end let array_map3 f v1 v2 v3 = if Array.length v1 <> Array.length v2 || Array.length v1 <> Array.length v3 then invalid_arg "array_map3"; if Array.length v1 == 0 then [| |] else begin let res = Array.create (Array.length v1) (f v1.(0) v2.(0) v3.(0)) in for i = 1 to pred (Array.length v1) do res.(i) <- f v1.(i) v2.(i) v3.(i) done; res end let array_map_left f a = (* Ocaml does not guarantee Array.map is LR *) let l = Array.length a in (* (even if so), then we rewrite it *) if l = 0 then [||] else begin let r = Array.create l (f a.(0)) in for i = 1 to l - 1 do r.(i) <- f a.(i) done; r end let array_map_left_pair f a g b = let l = Array.length a in if l = 0 then [||],[||] else begin let r = Array.create l (f a.(0)) in let s = Array.create l (g b.(0)) in for i = 1 to l - 1 do r.(i) <- f a.(i); s.(i) <- g b.(i) done; r, s end let array_iter2 f v1 v2 = let n = Array.length v1 in if Array.length v2 <> n then invalid_arg "array_iter2" else for i = 0 to n - 1 do f v1.(i) v2.(i) done let pure_functional = false let array_fold_map' f v e = if pure_functional then let (l,e) = Array.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) v ([],e) in (Array.of_list l,e) else let e' = ref e in let v' = Array.map (fun x -> let (y,e) = f x !e' in e' := e; y) v in (v',!e') let array_fold_map2' f v1 v2 e = let e' = ref e in let v' = array_map2 (fun x1 x2 -> let (y,e) = f x1 x2 !e' in e' := e; y) v1 v2 in (v',!e') let array_distinct v = try for i=0 to Array.length v-1 do for j=i+1 to Array.length v-1 do if v.(i)=v.(j) then raise Exit done done; true with Exit -> false let array_union_map f a acc = Array.fold_left (fun x y -> f y x) acc a (* Matrices *) let matrix_transpose mat = List.fold_right (List.map2 (fun p c -> p::c)) mat (if mat = [] then [] else List.map (fun _ -> []) (List.hd mat)) (* Functions *) let identity x = x let compose f g x = f (g x) let iterate f = let rec iterate_f n x = if n <= 0 then x else iterate_f (pred n) (f x) in iterate_f let repeat n f x = for i = 1 to n do f x done let iterate_for a b f x = let rec iterate i v = if i > b then v else iterate (succ i) (f i v) in iterate a x (* Misc *) type ('a,'b) union = Inl of 'a | Inr of 'b module Intset = Set.Make(struct type t = int let compare = compare end) module Intmap = Map.Make(struct type t = int let compare = compare end) let intmap_in_dom x m = try let _ = Intmap.find x m in true with Not_found -> false let intmap_to_list m = Intmap.fold (fun n v l -> (n,v)::l) m [] let intmap_inv m b = Intmap.fold (fun n v l -> if v = b then n::l else l) m [] let interval n m = let rec interval_n (l,m) = if n > m then l else interval_n (m::l,pred m) in interval_n ([],m) let map_succeed f = let rec map_f = function | [] -> [] | h::t -> try (let x = f h in x :: map_f t) with Failure _ -> map_f t in map_f (* Pretty-printing *) let pr_spc = spc let pr_fnl = fnl let pr_int = int let pr_str = str let pr_coma () = str "," ++ spc () let pr_semicolon () = str ";" ++ spc () let pr_bar () = str "|" ++ spc () let pr_arg pr x = spc () ++ pr x let pr_opt pr = function None -> mt () | Some x -> pr_arg pr x let nth n = str (ordinal n) let rec prlist elem l = match l with | [] -> mt () | h::t -> Stream.lapp (fun () -> elem h) (prlist elem t) (* unlike all other functions below, [prlist] works lazily. if a strict behavior is needed, use [prlist_strict] instead. *) let rec prlist_strict elem l = match l with | [] -> mt () | h::t -> (elem h)++(prlist_strict elem t) let rec prlist_with_sep sep elem l = match l with | [] -> mt () | [h] -> elem h | h::t -> let e = elem h and s = sep() and r = prlist_with_sep sep elem t in e ++ s ++ r let pr_vertical_list pr = function | [] -> str "none" ++ fnl () | l -> fnl () ++ str " " ++ hov 0 (prlist_with_sep pr_fnl pr l) ++ fnl () let prvecti elem v = let n = Array.length v in let rec pr i = if i = 0 then elem 0 v.(0) else let r = pr (i-1) and e = elem i v.(i) in r ++ e in if n = 0 then mt () else pr (n - 1) let prvect_with_sep sep elem v = let rec pr n = if n = 0 then elem v.(0) else let r = pr (n-1) and s = sep() and e = elem v.(n) in r ++ s ++ e in let n = Array.length v in if n = 0 then mt () else pr (n - 1) let prvect elem v = prvect_with_sep mt elem v let surround p = hov 1 (str"(" ++ p ++ str")") (*s Size of ocaml values. *) module Size = struct open Obj (*s Pointers already visited are stored in a hash-table, where comparisons are done using physical equality. *) module H = Hashtbl.Make( struct type t = Obj.t let equal = (==) let hash o = Hashtbl.hash (magic o : int) end) let node_table = (H.create 257 : unit H.t) let in_table o = try H.find node_table o; true with Not_found -> false let add_in_table o = H.add node_table o () let reset_table () = H.clear node_table (*s Objects are traversed recursively, as soon as their tags are less than [no_scan_tag]. [count] records the numbers of words already visited. *) let size_of_double = size (repr 1.0) let count = ref 0 let rec traverse t = if not (in_table t) then begin add_in_table t; if is_block t then begin let n = size t in let tag = tag t in if tag < no_scan_tag then begin count := !count + 1 + n; for i = 0 to n - 1 do let f = field t i in if is_block f then traverse f done end else if tag = string_tag then count := !count + 1 + n else if tag = double_tag then count := !count + size_of_double else if tag = double_array_tag then count := !count + 1 + size_of_double * n else incr count end end (*s Sizes of objects in words and in bytes. The size in bytes is computed system-independently according to [Sys.word_size]. *) let size_w o = reset_table (); count := 0; traverse (repr o); !count let size_b o = (size_w o) * (Sys.word_size / 8) let size_kb o = (size_w o) / (8192 / Sys.word_size) end let size_w = Size.size_w let size_b = Size.size_b let size_kb = Size.size_kb (*s Total size of the allocated ocaml heap. *) let heap_size () = let stat = Gc.stat () and control = Gc.get () in let max_words_total = stat.Gc.heap_words + control.Gc.minor_heap_size in (max_words_total * Sys.word_size / 8) let heap_size_kb () = (heap_size () + 1023) / 1024 (*s interruption *) let interrupt = ref false let check_for_interrupt () = if !interrupt then begin interrupt := false; raise Sys.Break end