open Names open Declarations open Term open Environ open Conv_oracle open Reduction open Closure open Vm open Csymtable open Univ let val_of_constr env c = val_of_constr (pre_env env) c (* Test la structure des piles *) let compare_zipper z1 z2 = match z1, z2 with | Zapp args1, Zapp args2 -> nargs args1 = nargs args2 | Zfix(f1,args1), Zfix(f2,args2) -> nargs args1 = nargs args2 | Zswitch _, Zswitch _ -> true | _ , _ -> false let rec compare_stack stk1 stk2 = match stk1, stk2 with | [], [] -> true | z1::stk1, z2::stk2 -> if compare_zipper z1 z2 then compare_stack stk1 stk2 else false | _, _ -> false (* Conversion *) let conv_vect fconv vect1 vect2 cu = let n = Array.length vect1 in if n = Array.length vect2 then let rcu = ref cu in for i = 0 to n - 1 do rcu := fconv vect1.(i) vect2.(i) !rcu done; !rcu else raise NotConvertible let infos = ref (create_clos_infos betaiotazeta Environ.empty_env) let rec conv_val pb k v1 v2 cu = if v1 == v2 then cu else conv_whd pb k (whd_val v1) (whd_val v2) cu and conv_whd pb k whd1 whd2 cu = match whd1, whd2 with | Vsort s1, Vsort s2 -> sort_cmp pb s1 s2 cu | Vprod p1, Vprod p2 -> let cu = conv_val CONV k (dom p1) (dom p2) cu in conv_fun pb k (codom p1) (codom p2) cu | Vfun f1, Vfun f2 -> conv_fun CONV k f1 f2 cu | Vfix (f1,None), Vfix (f2,None) -> conv_fix k f1 f2 cu | Vfix (f1,Some args1), Vfix(f2,Some args2) -> if nargs args1 <> nargs args2 then raise NotConvertible else conv_arguments k args1 args2 (conv_fix k f1 f2 cu) | Vcofix (cf1,_,None), Vcofix (cf2,_,None) -> conv_cofix k cf1 cf2 cu | Vcofix (cf1,_,Some args1), Vcofix (cf2,_,Some args2) -> if nargs args1 <> nargs args2 then raise NotConvertible else conv_arguments k args1 args2 (conv_cofix k cf1 cf2 cu) | Vconstr_const i1, Vconstr_const i2 -> if i1 = i2 then cu else raise NotConvertible | Vconstr_block b1, Vconstr_block b2 -> let sz = bsize b1 in if btag b1 = btag b2 && sz = bsize b2 then let rcu = ref cu in for i = 0 to sz - 1 do rcu := conv_val CONV k (bfield b1 i) (bfield b2 i) !rcu done; !rcu else raise NotConvertible | Vatom_stk(a1,stk1), Vatom_stk(a2,stk2) -> conv_atom pb k a1 stk1 a2 stk2 cu | _, Vatom_stk(Aiddef(_,v),stk) -> conv_whd pb k whd1 (force_whd v stk) cu | Vatom_stk(Aiddef(_,v),stk), _ -> conv_whd pb k (force_whd v stk) whd2 cu | _, _ -> raise NotConvertible and conv_atom pb k a1 stk1 a2 stk2 cu = match a1, a2 with | Aind (kn1,i1), Aind(kn2,i2) -> if eq_ind (kn1,i1) (kn2,i2) && compare_stack stk1 stk2 then conv_stack k stk1 stk2 cu else raise NotConvertible | Aid ik1, Aid ik2 -> if ik1 = ik2 && compare_stack stk1 stk2 then conv_stack k stk1 stk2 cu else raise NotConvertible | Aiddef(ik1,v1), Aiddef(ik2,v2) -> begin try if eq_table_key ik1 ik2 && compare_stack stk1 stk2 then conv_stack k stk1 stk2 cu else raise NotConvertible with NotConvertible -> if oracle_order ik1 ik2 then conv_whd pb k (whd_stack v1 stk1) (Vatom_stk(a2,stk2)) cu else conv_whd pb k (Vatom_stk(a1,stk1)) (whd_stack v2 stk2) cu end | Aiddef(ik1,v1), _ -> conv_whd pb k (force_whd v1 stk1) (Vatom_stk(a2,stk2)) cu | _, Aiddef(ik2,v2) -> conv_whd pb k (Vatom_stk(a1,stk1)) (force_whd v2 stk2) cu | _, _ -> raise NotConvertible and conv_stack k stk1 stk2 cu = match stk1, stk2 with | [], [] -> cu | Zapp args1 :: stk1, Zapp args2 :: stk2 -> conv_stack k stk1 stk2 (conv_arguments k args1 args2 cu) | Zfix(f1,args1) :: stk1, Zfix(f2,args2) :: stk2 -> conv_stack k stk1 stk2 (conv_arguments k args1 args2 (conv_fix k f1 f2 cu)) | Zswitch sw1 :: stk1, Zswitch sw2 :: stk2 -> if check_switch sw1 sw2 then let vt1,vt2 = type_of_switch sw1, type_of_switch sw2 in let rcu = ref (conv_val CONV k vt1 vt2 cu) in let b1, b2 = branch_of_switch k sw1, branch_of_switch k sw2 in for i = 0 to Array.length b1 - 1 do rcu := conv_val CONV (k + fst b1.(i)) (snd b1.(i)) (snd b2.(i)) !rcu done; conv_stack k stk1 stk2 !rcu else raise NotConvertible | _, _ -> raise NotConvertible and conv_fun pb k f1 f2 cu = if f1 == f2 then cu else let arity,b1,b2 = decompose_vfun2 k f1 f2 in conv_val pb (k+arity) b1 b2 cu and conv_fix k f1 f2 cu = if f1 == f2 then cu else if check_fix f1 f2 then let bf1, tf1 = reduce_fix k f1 in let bf2, tf2 = reduce_fix k f2 in let cu = conv_vect (conv_val CONV k) tf1 tf2 cu in conv_vect (conv_fun CONV (k + Array.length tf1)) bf1 bf2 cu else raise NotConvertible and conv_cofix k cf1 cf2 cu = if cf1 == cf2 then cu else if check_cofix cf1 cf2 then let bcf1, tcf1 = reduce_cofix k cf1 in let bcf2, tcf2 = reduce_cofix k cf2 in let cu = conv_vect (conv_val CONV k) tcf1 tcf2 cu in conv_vect (conv_val CONV (k + Array.length tcf1)) bcf1 bcf2 cu else raise NotConvertible and conv_arguments k args1 args2 cu = if args1 == args2 then cu else let n = nargs args1 in if n = nargs args2 then let rcu = ref cu in for i = 0 to n - 1 do rcu := conv_val CONV k (arg args1 i) (arg args2 i) !rcu done; !rcu else raise NotConvertible let rec conv_eq pb t1 t2 cu = if t1 == t2 then cu else match kind_of_term t1, kind_of_term t2 with | Rel n1, Rel n2 -> if n1 = n2 then cu else raise NotConvertible | Meta m1, Meta m2 -> if m1 = m2 then cu else raise NotConvertible | Var id1, Var id2 -> if id1 = id2 then cu else raise NotConvertible | Sort s1, Sort s2 -> sort_cmp pb s1 s2 cu | Cast (c1,_,_), _ -> conv_eq pb c1 t2 cu | _, Cast (c2,_,_) -> conv_eq pb t1 c2 cu | Prod (_,t1,c1), Prod (_,t2,c2) -> conv_eq pb c1 c2 (conv_eq CONV t1 t2 cu) | Lambda (_,t1,c1), Lambda (_,t2,c2) -> conv_eq CONV c1 c2 cu | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> conv_eq pb c1 c2 (conv_eq CONV b1 b2 cu) | App (c1,l1), App (c2,l2) -> conv_eq_vect l1 l2 (conv_eq CONV c1 c2 cu) | Evar (e1,l1), Evar (e2,l2) -> if e1 = e2 then conv_eq_vect l1 l2 cu else raise NotConvertible | Const c1, Const c2 -> if eq_constant c1 c2 then cu else raise NotConvertible | Ind c1, Ind c2 -> if eq_ind c1 c2 then cu else raise NotConvertible | Construct c1, Construct c2 -> if eq_constructor c1 c2 then cu else raise NotConvertible | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) -> let pcu = conv_eq CONV p1 p2 cu in let ccu = conv_eq CONV c1 c2 pcu in conv_eq_vect bl1 bl2 ccu | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) -> if ln1 = ln2 then conv_eq_vect tl1 tl2 (conv_eq_vect bl1 bl2 cu) else raise NotConvertible | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) -> if ln1 = ln2 then conv_eq_vect tl1 tl2 (conv_eq_vect bl1 bl2 cu) else raise NotConvertible | _ -> raise NotConvertible and conv_eq_vect vt1 vt2 cu = let len = Array.length vt1 in if len = Array.length vt2 then let rcu = ref cu in for i = 0 to len-1 do rcu := conv_eq CONV vt1.(i) vt2.(i) !rcu done; !rcu else raise NotConvertible let vconv pb env t1 t2 = let cu = try conv_eq pb t1 t2 empty_constraint with NotConvertible -> infos := create_clos_infos betaiotazeta env; let v1 = val_of_constr env t1 in let v2 = val_of_constr env t2 in let cu = conv_val pb (nb_rel env) v1 v2 empty_constraint in cu in cu let _ = Reduction.set_vm_conv vconv let use_vm = ref false let set_use_vm b = use_vm := b; if b then Reduction.set_default_conv vconv else Reduction.set_default_conv Reduction.conv_cmp let use_vm _ = !use_vm