(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* bool (** Is the universe set or prop? *) val is_prop : t -> bool val is_set : t -> bool (** Is it specifically Prop or Set *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function *) val hash : t -> int val make : Names.DirPath.t -> int -> t (** Create a new universe level from a unique identifier and an associated module path. *) val pr : t -> Pp.std_ppcmds (** Pretty-printing *) val to_string : t -> string (** Debug printing *) val var : int -> t val var_index : t -> int option end type universe_level = Level.t (** Alias name. *) (** Sets of universe levels *) module LSet : sig include CSig.SetS with type elt = universe_level val pr : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds (** Pretty-printing *) end type universe_set = LSet.t module Universe : sig type t (** Type of universes. A universe is defined as a set of level expressions. A level expression is built from levels and successors of level expressions, i.e.: le ::= l + n, n \in N. A universe is said atomic if it consists of a single level expression with no increment, and algebraic otherwise (think the least upper bound of a set of level expressions). *) val compare : t -> t -> int (** Comparison function *) val equal : t -> t -> bool (** Equality function on formal universes *) val hash : t -> int (** Hash function *) val make : Level.t -> t (** Create a universe representing the given level. *) val pr : t -> Pp.std_ppcmds (** Pretty-printing *) val pr_with : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds val is_level : t -> bool (** Test if the universe is a level or an algebraic universe. *) val is_levels : t -> bool (** Test if the universe is a lub of levels or contains +n's. *) val level : t -> Level.t option (** Try to get a level out of a universe, returns [None] if it is an algebraic universe. *) val levels : t -> LSet.t (** Get the levels inside the universe, forgetting about increments *) val super : t -> t (** The universe strictly above *) val sup : t -> t -> t (** The l.u.b. of 2 universes *) val type0m : t (** image of Prop in the universes hierarchy *) val type0 : t (** image of Set in the universes hierarchy *) val type1 : t (** the universe of the type of Prop/Set *) val exists : (Level.t * int -> bool) -> t -> bool val for_all : (Level.t * int -> bool) -> t -> bool end type universe = Universe.t (** Alias name. *) val pr_uni : universe -> Pp.std_ppcmds (** The universes hierarchy: Type 0- = Prop <= Type 0 = Set <= Type 1 <= ... Typing of universes: Type 0-, Type 0 : Type 1; Type i : Type (i+1) if i>0 *) val type0m_univ : universe val type0_univ : universe val type1_univ : universe val is_type0_univ : universe -> bool val is_type0m_univ : universe -> bool val is_univ_variable : universe -> bool val is_small_univ : universe -> bool val sup : universe -> universe -> universe val super : universe -> universe val universe_level : universe -> universe_level option (** [univ_level_mem l u] Is l is mentionned in u ? *) val univ_level_mem : universe_level -> universe -> bool (** [univ_level_rem u v min] removes [u] from [v], resulting in [min] if [v] was exactly [u]. *) val univ_level_rem : universe_level -> universe -> universe -> universe (** {6 Constraints. } *) type constraint_type = Lt | Le | Eq type univ_constraint = universe_level * constraint_type * universe_level module Constraint : sig include Set.S with type elt = univ_constraint end type constraints = Constraint.t val empty_constraint : constraints val union_constraint : constraints -> constraints -> constraints val eq_constraint : constraints -> constraints -> bool (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** Constrained *) val constraints_of : 'a constrained -> constraints (** Enforcing constraints. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints val enforce_eq : universe constraint_function val enforce_leq : universe constraint_function val enforce_eq_level : universe_level constraint_function val enforce_leq_level : universe_level constraint_function (** Type explanation is used to decorate error messages to provide useful explanation why a given constraint is rejected. It is composed of a path of universes and relation kinds [(r1,u1);..;(rn,un)] means .. <(r1) u1 <(r2) ... <(rn) un (where <(ri) is the relation symbol denoted by ri, currently only < and <=). The lowest end of the chain is supposed known (see UniverseInconsistency exn). The upper end may differ from the second univ of UniverseInconsistency because all universes in the path are canonical. Note that each step does not necessarily correspond to an actual constraint, but reflect how the system stores the graph and may result from combination of several constraints... *) type explanation = (constraint_type * universe) list type univ_inconsistency = constraint_type * universe * universe * explanation option exception UniverseInconsistency of univ_inconsistency (** {6 Support for universe polymorphism } *) (** Polymorphic maps from universe levels to 'a *) module LMap : sig include CMap.ExtS with type key = universe_level and module Set := LSet val union : 'a t -> 'a t -> 'a t (** [union x y] favors the bindings in the first map. *) val diff : 'a t -> 'a t -> 'a t (** [diff x y] removes bindings from x that appear in y (whatever the value). *) val subst_union : 'a option t -> 'a option t -> 'a option t (** [subst_union x y] favors the bindings of the first map that are [Some], otherwise takes y's bindings. *) val pr : ('a -> Pp.std_ppcmds) -> 'a t -> Pp.std_ppcmds (** Pretty-printing *) end type 'a universe_map = 'a LMap.t (** {6 Substitution} *) type universe_subst_fn = universe_level -> universe type universe_level_subst_fn = universe_level -> universe_level (** A full substitution, might involve algebraic universes *) type universe_subst = universe universe_map type universe_level_subst = universe_level universe_map val level_subst_of : universe_subst_fn -> universe_level_subst_fn (** {6 Universe instances} *) module Instance : sig type t (** A universe instance represents a vector of argument universes to a polymorphic definition (constant, inductive or constructor). *) val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t (** To concatenate two instances, used for discharge *) val equal : t -> t -> bool (** Equality *) val length : t -> int (** Instance length *) val hcons : t -> t (** Hash-consing. *) val hash : t -> int (** Hash value *) val share : t -> t * int (** Simultaneous hash-consing and hash-value computation *) val subst_fn : universe_level_subst_fn -> t -> t (** Substitution by a level-to-level function. *) val pr : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds (** Pretty-printing, no comments *) val levels : t -> LSet.t (** The set of levels in the instance *) end type universe_instance = Instance.t val enforce_eq_instances : universe_instance constraint_function type 'a puniverses = 'a * universe_instance val out_punivs : 'a puniverses -> 'a val in_punivs : 'a -> 'a puniverses val eq_puniverses : ('a -> 'a -> bool) -> 'a puniverses -> 'a puniverses -> bool (** A vector of universe levels with universe constraints, representiong local universe variables and associated constraints *) module UContext : sig type t val make : Instance.t constrained -> t val empty : t val is_empty : t -> bool val instance : t -> Instance.t val constraints : t -> constraints val dest : t -> Instance.t * constraints (** Keeps the order of the instances *) val union : t -> t -> t (* the number of universes in the context *) val size : t -> int end type universe_context = UContext.t module AUContext : sig type t val repr : t -> UContext.t (** [repr ctx] is [(Var(0), ... Var(n-1) |= cstr] where [n] is the length of the context and [cstr] the abstracted constraints. *) val empty : t val is_empty : t -> bool (** Don't use. *) val instance : t -> Instance.t val size : t -> int (** Keeps the order of the instances *) val union : t -> t -> t val instantiate : Instance.t -> t -> Constraint.t (** Generate the set of instantiated constraints **) end type abstract_universe_context = AUContext.t (** Universe info for inductive types: A context of universe levels with universe constraints, representing local universe variables and constraints, together with a context of universe levels with universe constraints, representing conditions for subtyping used for inductive types. This data structure maintains the invariant that the context for subtyping constraints is exactly twice as big as the context for universe constraints. *) module CumulativityInfo : sig type t val make : universe_context * universe_context -> t val empty : t val is_empty : t -> bool val univ_context : t -> universe_context val subtyp_context : t -> universe_context (** This function takes a universe context representing constraints of an inductive and a Instance.t of fresh universe names for the subtyping (with the same length as the context in the given universe context) and produces a UInfoInd.t that with the trivial subtyping relation. *) val from_universe_context : universe_context -> universe_instance -> t val subtyping_susbst : t -> universe_level_subst end type cumulativity_info = CumulativityInfo.t module ACumulativityInfo : sig type t val univ_context : t -> abstract_universe_context val subtyp_context : t -> abstract_universe_context end type abstract_cumulativity_info = ACumulativityInfo.t (** Universe contexts (as sets) *) module ContextSet : sig type t = universe_set constrained val empty : t val is_empty : t -> bool val singleton : universe_level -> t val of_instance : Instance.t -> t val of_set : universe_set -> t val equal : t -> t -> bool val union : t -> t -> t val append : t -> t -> t (** Variant of {!union} which is more efficient when the left argument is much smaller than the right one. *) val diff : t -> t -> t val add_universe : universe_level -> t -> t val add_constraints : constraints -> t -> t val add_instance : Instance.t -> t -> t (** Arbitrary choice of linear order of the variables *) val to_context : t -> universe_context val of_context : universe_context -> t val constraints : t -> constraints val levels : t -> universe_set end (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set val empty_level_subst : universe_level_subst val is_empty_level_subst : universe_level_subst -> bool (** Substitution of universes. *) val subst_univs_level_level : universe_level_subst -> universe_level -> universe_level val subst_univs_level_universe : universe_level_subst -> universe -> universe val subst_univs_level_constraints : universe_level_subst -> constraints -> constraints val subst_univs_level_abstract_universe_context : universe_level_subst -> abstract_universe_context -> abstract_universe_context val subst_univs_level_instance : universe_level_subst -> universe_instance -> universe_instance (** Level to universe substitutions. *) val empty_subst : universe_subst val is_empty_subst : universe_subst -> bool val make_subst : universe_subst -> universe_subst_fn val subst_univs_universe : universe_subst_fn -> universe -> universe val subst_univs_constraints : universe_subst_fn -> constraints -> constraints (** Substitution of instances *) val subst_instance_instance : universe_instance -> universe_instance -> universe_instance val subst_instance_universe : universe_instance -> universe -> universe val make_instance_subst : universe_instance -> universe_level_subst val make_inverse_instance_subst : universe_instance -> universe_level_subst val abstract_universes : universe_context -> universe_level_subst * abstract_universe_context val abstract_cumulativity_info : cumulativity_info -> universe_level_subst * abstract_cumulativity_info val make_abstract_instance : abstract_universe_context -> universe_instance (** {6 Pretty-printing of universes. } *) val pr_constraint_type : constraint_type -> Pp.std_ppcmds val pr_constraints : (Level.t -> Pp.std_ppcmds) -> constraints -> Pp.std_ppcmds val pr_universe_context : (Level.t -> Pp.std_ppcmds) -> universe_context -> Pp.std_ppcmds val pr_cumulativity_info : (Level.t -> Pp.std_ppcmds) -> cumulativity_info -> Pp.std_ppcmds val pr_abstract_universe_context : (Level.t -> Pp.std_ppcmds) -> abstract_universe_context -> Pp.std_ppcmds val pr_abstract_cumulativity_info : (Level.t -> Pp.std_ppcmds) -> abstract_cumulativity_info -> Pp.std_ppcmds val pr_universe_context_set : (Level.t -> Pp.std_ppcmds) -> universe_context_set -> Pp.std_ppcmds val explain_universe_inconsistency : (Level.t -> Pp.std_ppcmds) -> univ_inconsistency -> Pp.std_ppcmds val pr_universe_level_subst : universe_level_subst -> Pp.std_ppcmds val pr_universe_subst : universe_subst -> Pp.std_ppcmds (** {6 Hash-consing } *) val hcons_univ : universe -> universe val hcons_constraints : constraints -> constraints val hcons_universe_set : universe_set -> universe_set val hcons_universe_context : universe_context -> universe_context val hcons_abstract_universe_context : abstract_universe_context -> abstract_universe_context val hcons_universe_context_set : universe_context_set -> universe_context_set val hcons_cumulativity_info : cumulativity_info -> cumulativity_info val hcons_abstract_cumulativity_info : abstract_cumulativity_info -> abstract_cumulativity_info (******) (* deprecated: use qualified names instead *) val compare_levels : universe_level -> universe_level -> int val eq_levels : universe_level -> universe_level -> bool (** deprecated: Equality of formal universe expressions. *) val equal_universes : universe -> universe -> bool (** Universes of constraints *) val universes_of_constraints : constraints -> universe_set