(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* int val eq : t -> t -> bool val hcons : t -> t end module HashedList (M : Hashconsed) : sig type t = private Nil | Cons of M.t * int * t val nil : t val cons : M.t -> t -> t end = struct type t = Nil | Cons of M.t * int * t module Self = struct type _t = t type t = _t type u = (M.t -> M.t) let hash = function Nil -> 0 | Cons (_, h, _) -> h let eq l1 l2 = match l1, l2 with | Nil, Nil -> true | Cons (x1, _, l1), Cons (x2, _, l2) -> x1 == x2 && l1 == l2 | _ -> false let hashcons hc = function | Nil -> Nil | Cons (x, h, l) -> Cons (hc x, h, l) end module Hcons = Hashcons.Make(Self) let hcons = Hashcons.simple_hcons Hcons.generate Hcons.hcons M.hcons (** No recursive call: the interface guarantees that all HLists from this program are already hashconsed. If we get some external HList, we can still reconstruct it by traversing it entirely. *) let nil = Nil let cons x l = let h = M.hash x in let hl = match l with Nil -> 0 | Cons (_, h, _) -> h in let h = Hashset.Combine.combine h hl in hcons (Cons (x, h, l)) end module HList = struct module type S = sig type elt type t = private Nil | Cons of elt * int * t val hash : t -> int val nil : t val cons : elt -> t -> t val tip : elt -> t val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a val map : (elt -> elt) -> t -> t val smartmap : (elt -> elt) -> t -> t val exists : (elt -> bool) -> t -> bool val for_all : (elt -> bool) -> t -> bool val for_all2 : (elt -> elt -> bool) -> t -> t -> bool val mem : elt -> t -> bool val remove : elt -> t -> t val to_list : t -> elt list val compare : (elt -> elt -> int) -> t -> t -> int end module Make (H : Hashconsed) : S with type elt = H.t = struct type elt = H.t include HashedList(H) let hash = function Nil -> 0 | Cons (_, h, _) -> h let tip e = cons e nil let rec fold f l accu = match l with | Nil -> accu | Cons (x, _, l) -> fold f l (f x accu) let rec map f = function | Nil -> nil | Cons (x, _, l) -> cons (f x) (map f l) let smartmap = map (** Apriori hashconsing ensures that the map is equal to its argument *) let rec exists f = function | Nil -> false | Cons (x, _, l) -> f x || exists f l let rec for_all f = function | Nil -> true | Cons (x, _, l) -> f x && for_all f l let rec for_all2 f l1 l2 = match l1, l2 with | Nil, Nil -> true | Cons (x1, _, l1), Cons (x2, _, l2) -> f x1 x2 && for_all2 f l1 l2 | _ -> false let rec to_list = function | Nil -> [] | Cons (x, _, l) -> x :: to_list l let rec remove x = function | Nil -> nil | Cons (y, _, l) -> if H.eq x y then l else cons y (remove x l) let rec mem x = function | Nil -> false | Cons (y, _, l) -> H.eq x y || mem x l let rec compare cmp l1 l2 = match l1, l2 with | Nil, Nil -> 0 | Cons (x1, h1, l1), Cons (x2, h2, l2) -> let c = Int.compare h1 h2 in if c == 0 then let c = cmp x1 x2 in if c == 0 then compare cmp l1 l2 else c else c | Cons _, Nil -> 1 | Nil, Cons _ -> -1 end end module RawLevel = struct open Names type t = | Prop | Set | Level of int * DirPath.t | Var of int (* Hash-consing *) let equal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> Int.equal n n' && DirPath.equal d d' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (i1, dp1), Level (i2, dp2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m let hequal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> n == n' && d == d' | Var n, Var n' -> n == n' | _ -> false let hcons = function | Prop as x -> x | Set as x -> x | Level (n,d) as x -> let d' = Names.DirPath.hcons d in if d' == d then x else Level (n,d') | Var n as x -> x open Hashset.Combine let hash = function | Prop -> combinesmall 1 0 | Set -> combinesmall 1 1 | Var n -> combinesmall 2 n | Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d)) end module Level = struct open Names type raw_level = RawLevel.t = | Prop | Set | Level of int * DirPath.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data (** Hashcons on levels + their hash *) module Self = struct type _t = t type t = _t type u = unit let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data let hash x = x.hash let hashcons () x = let data' = RawLevel.hcons x.data in if x.data == data' then x else { x with data = data' } end let hcons = let module H = Hashcons.Make(Self) in Hashcons.simple_hcons H.generate H.hcons () let make l = hcons { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let is_small x = match data x with | Level _ -> false | Var _ -> false | Prop -> true | Set -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let compare u v = if u == v then 0 else let c = Int.compare (hash u) (hash v) in if c == 0 then RawLevel.compare (data u) (data v) else c let natural_compare u v = if u == v then 0 else RawLevel.compare (data u) (data v) let to_string x = match data x with | Prop -> "Prop" | Set -> "Set" | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n | Var n -> "Var(" ^ string_of_int n ^ ")" let pr u = str (to_string u) let apart u v = match data u, data v with | Prop, Set | Set, Prop -> true | _ -> false let vars = Array.init 20 (fun i -> make (Var i)) let var n = if n < 20 then vars.(n) else make (Var n) let var_index u = match data u with | Var n -> Some n | _ -> None let make m n = make (Level (n, Names.DirPath.hcons m)) end (** Level maps *) module LMap = struct module M = HMap.Make (Level) include M let union l r = merge (fun k l r -> match l, r with | Some _, _ -> l | _, _ -> r) l r let subst_union l r = merge (fun k l r -> match l, r with | Some (Some _), _ -> l | Some None, None -> l | _, _ -> r) l r let diff ext orig = fold (fun u v acc -> if mem u orig then acc else add u v acc) ext empty let pr f m = h 0 (prlist_with_sep fnl (fun (u, v) -> Level.pr u ++ f v) (bindings m)) end module LSet = struct include LMap.Set let pr prl s = str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}" let of_array l = Array.fold_left (fun acc x -> add x acc) empty l end type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level type universe_set = LSet.t (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int type _t = t (* Hashing of expressions *) module ExprHash = struct type t = _t type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let eq l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module HExpr = struct module H = Hashcons.Make(ExprHash) type t = ExprHash.t let hcons = Hashcons.simple_hcons H.generate H.hcons Level.hcons let hash = ExprHash.hash let eq x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) end let hcons = HExpr.hcons let make l = hcons (l, 0) let compare u v = if u == v then 0 else let (x, n) = u and (x', n') = v in if Int.equal n n' then Level.compare x x' else n - n' let prop = make Level.prop let set = make Level.set let type1 = hcons (Level.set, 1) let is_small = function | (l,0) -> Level.is_small l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && Level.is_small v) else false let successor (u,n) = if Level.is_prop u then type1 else hcons (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_prop u then hcons (Level.set,n+k) else hcons (u,n+k) type super_result = SuperSame of bool (* The level expressions are in cumulativity relation. boolean indicates if left is smaller than right? *) | SuperDiff of int (* The level expressions are unrelated, the comparison result is canonical *) (** [super u v] compares two level expressions, returning [SuperSame] if they refer to the same level at potentially different increments or [SuperDiff] if they are different. The booleans indicate if the left expression is "smaller" than the right one in both cases. *) let super (u,n as x) (v,n' as y) = let cmp = Level.compare u v in if Int.equal cmp 0 then SuperSame (n < n') else match x, y with | (l,0), (l',0) -> let open RawLevel in (match Level.data l, Level.data l' with | Prop, Prop -> SuperSame false | Prop, _ -> SuperSame true | _, Prop -> SuperSame false | _, _ -> SuperDiff cmp) | _, _ -> SuperDiff cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let pr_with f (v, n) = if Int.equal n 0 then f v else f v ++ str"+" ++ int n let is_level = function | (v, 0) -> true | _ -> false let level = function | (v,0) -> Some v | _ -> None let get_level (v,n) = v let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then hcons (Level.set, n) else hcons (v', n) end let compare_expr = Expr.compare module Huniv = HList.Make(Expr.HExpr) type t = Huniv.t open Huniv let equal x y = x == y || (Huniv.hash x == Huniv.hash y && Huniv.for_all2 Expr.equal x y) let hash = Huniv.hash let compare x y = if x == y then 0 else let hx = Huniv.hash x and hy = Huniv.hash y in let c = Int.compare hx hy in if c == 0 then Huniv.compare (fun e1 e2 -> compare_expr e1 e2) x y else c let rec hcons = function | Nil -> Huniv.nil | Cons (x, _, l) -> Huniv.cons x (hcons l) let make l = Huniv.tip (Expr.make l) let tip x = Huniv.tip x let pr l = match l with | Cons (u, _, Nil) -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr (to_list l)) ++ str ")" let pr_with f l = match l with | Cons (u, _, Nil) -> Expr.pr_with f u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma (Expr.pr_with f) (to_list l)) ++ str ")" let is_level l = match l with | Cons (l, _, Nil) -> Expr.is_level l | _ -> false let rec is_levels l = match l with | Cons (l, _, r) -> Expr.is_level l && is_levels r | Nil -> true let level l = match l with | Cons (l, _, Nil) -> Expr.level l | _ -> None let levels l = fold (fun x acc -> LSet.add (Expr.get_level x) acc) l LSet.empty let is_small u = match u with | Cons (l, _, Nil) -> Expr.is_small l | _ -> false (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip (Expr.successor Expr.set) let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies just above the universe variable u. Used to type the sort u. *) let super l = if is_small l then type1 else Huniv.map (fun x -> Expr.successor x) l let addn n l = Huniv.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | Nil, _ -> l2 | _, Nil -> l1 | Cons (h1, _, t1), Cons (h2, _, t2) -> let open Expr in (match super h1 h2 with | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2 | SuperSame false -> merge_univs l1 t2 | SuperDiff c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | Cons (b, _, l') -> let open Expr in (match super a b with | SuperSame false -> aux a l' | SuperSame true -> l | SuperDiff c -> if c <= 0 then cons a l else cons b (aux a l')) | Nil -> cons a l in fold (fun a acc -> aux a acc) u nil (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let empty = nil let exists = Huniv.exists let for_all = Huniv.for_all let smartmap = Huniv.smartmap end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let is_small_univ = Universe.is_small let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super open Universe let universe_level = Universe.level type constraint_type = Lt | Le | Eq type explanation = (constraint_type * universe) list let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe * explanation option exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v (p:explanation option) = raise (UniverseInconsistency (o,make u,make v,p)) (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = fold (fun (u1,op,u2) pp_std -> pp_std ++ prl u1 ++ pr_constraint_type op ++ prl u2 ++ fnl () ) c (str "") end let empty_constraint = Constraint.empty let union_constraint = Constraint.union let eq_constraint = Constraint.equal type constraints = Constraint.t module Hconstraint = Hashcons.Make( struct type t = univ_constraint type u = universe_level -> universe_level let hashcons hul (l1,k,l2) = (hul l1, k, hul l2) let eq (l1,k,l2) (l1',k',l2') = l1 == l1' && k == k' && l2 == l2' let hash = Hashtbl.hash end) module Hconstraints = Hashcons.Make( struct type t = constraints type u = univ_constraint -> univ_constraint let hashcons huc s = Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty let eq s s' = List.for_all2eq (==) (Constraint.elements s) (Constraint.elements s') let hash = Hashtbl.hash end) let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint (** A value with universe constraints. *) type 'a constrained = 'a * constraints let constraints_of (_, cst) = cst (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let enforce_eq_level u v c = (* We discard trivial constraints like u=u *) if Level.equal u v then c else if Level.apart u v then error_inconsistency Eq u v None else Constraint.add (u,Eq,v) c let enforce_eq u v c = match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> anomaly (Pp.str "A universe comparison can only happen between variables.") let check_univ_eq u v = Universe.equal u v let enforce_eq u v c = if check_univ_eq u v then c else enforce_eq u v c let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then if Level.equal x y then (* u+(k+1) <= u *) raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, None)) else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints.") let check_univ_leq_one u v = Universe.exists (Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = let open Universe.Huniv in let rec aux acc v = match v with | Cons (v, _, l) -> aux (fold (fun u -> constraint_add_leq u v) u c) l | Nil -> acc in aux c v let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let enforce_leq_level u v c = if Level.equal u v then c else Constraint.add (u,Le,v) c let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (super u) v (* Miscellaneous functions to remove or test local univ assumed to occur in a universe *) let univ_level_mem u v = Huniv.mem (Expr.make u) v let univ_level_rem u v min = match Universe.level v with | Some u' -> if Level.equal u u' then min else v | None -> Huniv.remove (Universe.Expr.make u) v (* Is u mentionned in v (or equals to v) ? *) (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t val equal : t -> t -> bool val length : t -> int val hcons : t -> t val hash : t -> int val share : t -> t * int val subst_fn : universe_level_subst_fn -> t -> t val pr : (Level.t -> Pp.std_ppcmds) -> t -> Pp.std_ppcmds val levels : t -> LSet.t end = struct type t = Level.t array let empty : t = [||] module HInstancestruct = struct type _t = t type t = _t type u = Level.t -> Level.t let hashcons huniv a = let len = Array.length a in if Int.equal len 0 then empty else begin for i = 0 to len - 1 do let x = Array.unsafe_get a i in let x' = huniv x in if x == x' then () else Array.unsafe_set a i x' done; a end let eq t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hash a = let accu = ref 0 in for i = 0 to Array.length a - 1 do let l = Array.unsafe_get a i in let h = Level.hash l in accu := Hashset.Combine.combine !accu h; done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in h end module HInstance = Hashcons.Make(HInstancestruct) let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons let hash = HInstancestruct.hash let share a = (hcons a, hash a) let empty = hcons [||] let is_empty x = Int.equal (Array.length x) 0 let append x y = if Array.length x = 0 then y else if Array.length y = 0 then x else Array.append x y let of_array a = assert(Array.for_all (fun x -> not (Level.is_prop x)) a); a let to_array a = a let length a = Array.length a let subst_fn fn t = let t' = CArray.smartmap fn t in if t' == t then t else of_array t' let levels x = LSet.of_array x let pr = prvect_with_sep spc let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) end let enforce_eq_instances x y = let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with") (Pp.str " instances of different lengths.")); CArray.fold_right2 enforce_eq_level ax ay type universe_instance = Instance.t type 'a puniverses = 'a * Instance.t let out_punivs (x, y) = x let in_punivs x = (x, Instance.empty) let eq_puniverses f (x, u) (y, u') = f x y && Instance.equal u u' (** A context of universe levels with universe constraints, representing local universe variables and constraints *) module UContext = struct type t = Instance.t constrained let make x = x (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (Instance.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) let hcons (univs, cst) = (Instance.hcons univs, hcons_constraints cst) let instance (univs, cst) = univs let constraints (univs, cst) = cst let union (univs, cst) (univs', cst') = Instance.append univs univs', Constraint.union cst cst' let dest x = x let size (x,_) = Instance.length x end type universe_context = UContext.t let hcons_universe_context = UContext.hcons (** Universe info for inductive types: A context of universe levels with universe constraints, representing local universe variables and constraints, together with a context of universe levels with universe constraints, representing conditions for subtyping used for inductive types. This data structure maintains the invariant that the context for subtyping constraints is exactly twice as big as the context for universe constraints. *) module UInfoInd = struct type t = universe_context * universe_context let make x = if (Instance.length (UContext.instance (snd x))) = (Instance.length (UContext.instance (fst x))) * 2 then x else anomaly (Pp.str "Invalid subtyping information encountered!") let empty = (UContext.empty, UContext.empty) let is_empty (univcst, subtypcst) = UContext.is_empty univcst && UContext.is_empty subtypcst let halve_context ctx = let len = Array.length (Instance.to_array ctx) in let halflen = len / 2 in (Instance.of_array (Array.sub (Instance.to_array ctx) 0 halflen), Instance.of_array (Array.sub (Instance.to_array ctx) halflen halflen)) let pr prl (univcst, subtypcst) = if UContext.is_empty univcst then mt() else let (ctx, ctx') = halve_context (UContext.instance subtypcst) in (UContext.pr prl univcst) ++ fnl () ++ fnl () ++ h 0 (str "~@{" ++ Instance.pr prl ctx ++ str "} <= ~@{" ++ Instance.pr prl ctx' ++ str "} iff ") ++ fnl () ++ h 0 (v 0 (Constraint.pr prl (UContext.constraints subtypcst))) let hcons (univcst, subtypcst) = (UContext.hcons univcst, UContext.hcons subtypcst) let univ_context (univcst, subtypcst) = univcst let subtyp_context (univcst, subtypcst) = subtypcst let create_trivial_subtyping ctx ctx' = CArray.fold_left_i (fun i cst l -> Constraint.add (l, Eq, Array.get ctx' i) cst) Constraint.empty (Instance.to_array ctx) (** This function takes a universe context representing constraints of an inductive and a Instance.t of fresh universe names for the subtyping (with the same length as the context in the given universe context) and produces a UInfoInd.t that with the trivial subtyping relation. *) let from_universe_context univcst freshunivs = let inst = (UContext.instance univcst) in assert (Instance.length freshunivs = Instance.length inst); (univcst, UContext.make (Instance.append inst freshunivs, create_trivial_subtyping inst freshunivs)) let subtyping_susbst (univcst, subtypcst) = let (ctx, ctx') = (halve_context (UContext.instance subtypcst))in Array.fold_left2 (fun subst l1 l2 -> LMap.add l1 l2 subst) LMap.empty ctx ctx' let dest x = x let size ((x,_), _) = Instance.length x end type universe_info_ind = UInfoInd.t let hcons_universe_info_ind = UInfoInd.hcons (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet = struct type t = universe_set constrained let empty = (LSet.empty, Constraint.empty) let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst let equal (univs, cst as x) (univs', cst' as y) = x == y || (LSet.equal univs univs' && Constraint.equal cst cst') let of_set s = (s, Constraint.empty) let singleton l = of_set (LSet.singleton l) let of_instance i = of_set (Instance.levels i) let union (univs, cst as x) (univs', cst' as y) = if x == y then x else LSet.union univs univs', Constraint.union cst cst' let append (univs, cst) (univs', cst') = let univs = LSet.fold LSet.add univs univs' in let cst = Constraint.fold Constraint.add cst cst' in (univs, cst) let diff (univs, cst) (univs', cst') = LSet.diff univs univs', Constraint.diff cst cst' let add_universe u (univs, cst) = LSet.add u univs, cst let add_constraints cst' (univs, cst) = univs, Constraint.union cst cst' let add_instance inst (univs, cst) = let v = Instance.to_array inst in let fold accu u = LSet.add u accu in let univs = Array.fold_left fold univs v in (univs, cst) let sort_levels a = Array.sort Level.natural_compare a; a let to_context (ctx, cst) = (Instance.of_array (sort_levels (Array.of_list (LSet.elements ctx))), cst) let of_context (ctx, cst) = (Instance.levels ctx, cst) let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (LSet.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) let constraints (univs, cst) = cst let levels (univs, cst) = univs end type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set (** Substitutions. *) let empty_subst = LMap.empty let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let subst_univs_level_instance subst i = let i' = Instance.subst_fn (subst_univs_level_level subst) i in if i == i' then i else i' let subst_univs_level_constraint subst (u,d,v) = let u' = subst_univs_level_level subst u and v' = subst_univs_level_level subst v in if d != Lt && Level.equal u' v' then None else Some (u',d,v') let subst_univs_level_constraints subst csts = Constraint.fold (fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c)) csts Constraint.empty (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = Universe.Huniv.fold (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.Huniv.tip u)) substs nosubst let subst_univs_level fn l = try Some (fn l) with Not_found -> None let subst_univs_constraint fn (u,d,v as c) cstrs = let u' = subst_univs_level fn u in let v' = subst_univs_level fn v in match u', v' with | None, None -> Constraint.add c cstrs | Some u, None -> enforce_univ_constraint (u,d,make v) cstrs | None, Some v -> enforce_univ_constraint (make u,d,v) cstrs | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs let subst_univs_constraints subst csts = Constraint.fold (fun c cstrs -> subst_univs_constraint subst c cstrs) csts Constraint.empty let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.smartmap (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty (** Substitute instance inst for ctx in csts *) let instantiate_univ_context (ctx, csts) = (ctx, subst_instance_constraints ctx csts) (** Substitute instance inst for ctx in universe constraints and subtyping constraints *) let instantiate_univ_info_ind (univcst, subtpcst) = (instantiate_univ_context univcst, instantiate_univ_context subtpcst) let instantiate_univ_constraints u (_, csts) = subst_instance_constraints u csts let make_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add l (Level.var i) acc) LMap.empty arr let make_inverse_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add (Level.var i) l acc) LMap.empty arr let abstract_universes poly ctx = let instance = UContext.instance ctx in if poly then let subst = make_instance_subst instance in let cstrs = subst_univs_level_constraints subst (UContext.constraints ctx) in let ctx = UContext.make (instance, cstrs) in subst, ctx else empty_level_subst, ctx (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_universe_info_ind = UInfoInd.pr let pr_universe_context_set = ContextSet.pr let pr_universe_subst = LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ()) let pr_universe_level_subst = LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ()) module Huniverse_set = Hashcons.Make( struct type t = universe_set type u = universe_level -> universe_level let hashcons huc s = LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty let eq s s' = LSet.equal s s' let hash = Hashtbl.hash end) let hcons_universe_set = Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons let hcons_universe_context_set (v, c) = (hcons_universe_set v, hcons_constraints c) let hcons_univ x = Universe.hcons x let explain_universe_inconsistency prl (o,u,v,p) = let pr_uni = Universe.pr_with prl in let pr_rel = function | Eq -> str"=" | Lt -> str"<" | Le -> str"<=" in let reason = match p with | None | Some [] -> mt() | Some p -> str " because" ++ spc() ++ pr_uni v ++ prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ pr_uni v) p ++ (if Universe.equal (snd (List.last p)) u then mt() else (spc() ++ str "= " ++ pr_uni u)) in str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++ pr_rel o ++ spc() ++ pr_uni v ++ reason let compare_levels = Level.compare let eq_levels = Level.equal let equal_universes = Universe.equal let subst_instance_constraints = if Flags.profile then let key = Profile.declare_profile "subst_instance_constraints" in Profile.profile2 key subst_instance_constraints else subst_instance_constraints