(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* () | Canonical n -> n.status <- NoMark in UMap.iter iter g.entries let rec cleanup_universes g = try unsafe_cleanup_universes g with e -> (** The only way unsafe_cleanup_universes may raise an exception is when a serious error (stack overflow, out of memory) occurs, or a signal is sent. In this unlikely event, we relaunch the cleanup until we finally succeed. *) cleanup_universes g; raise e (* Every Level.t has a unique canonical arc representative *) (* Low-level function : makes u an alias for v. Does not removes edges from n_edges, but decrements n_nodes. u should be entered as canonical before. *) let enter_equiv g u v = { entries = UMap.modify u (fun _ a -> match a with | Canonical n -> n.status <- NoMark; Equiv v | _ -> assert false) g.entries; index = g.index; n_nodes = g.n_nodes - 1; n_edges = g.n_edges } (* Low-level function : changes data associated with a canonical node. Resets the mutable fields in the old record, in order to avoid breaking invariants for other users of this record. n.univ should already been inserted as a canonical node. *) let change_node g n = { g with entries = UMap.modify n.univ (fun _ a -> match a with | Canonical n' -> n'.status <- NoMark; Canonical n | _ -> assert false) g.entries } (* repr : universes -> Level.t -> canonical_node *) (* canonical representative : we follow the Equiv links *) let rec repr g u = let a = try UMap.find u g.entries with Not_found -> CErrors.anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined.") in match a with | Equiv v -> repr g v | Canonical arc -> arc let get_set_arc g = repr g Level.set let is_set_arc u = Level.is_set u.univ let is_prop_arc u = Level.is_prop u.univ exception AlreadyDeclared (* Reindexes the given universe, using the next available index. *) let use_index g u = let u = repr g u in let g = change_node g { u with ilvl = g.index } in assert (g.index > min_int); { g with index = g.index - 1 } (* [safe_repr] is like [repr] but if the graph doesn't contain the searched universe, we add it. *) let safe_repr g u = let rec safe_repr_rec entries u = match UMap.find u entries with | Equiv v -> safe_repr_rec entries v | Canonical arc -> arc in try g, safe_repr_rec g.entries u with Not_found -> let can = { univ = u; ltle = UMap.empty; gtge = LSet.empty; rank = if Level.is_small u then big_rank else 0; klvl = 0; ilvl = 0; status = NoMark } in let g = { g with entries = UMap.add u (Canonical can) g.entries; n_nodes = g.n_nodes + 1 } in let g = use_index g u in g, repr g u (* Returns 1 if u is higher than v in topological order. -1 lower 0 if u = v *) let topo_compare u v = if u.klvl > v.klvl then 1 else if u.klvl < v.klvl then -1 else if u.ilvl > v.ilvl then 1 else if u.ilvl < v.ilvl then -1 else (assert (u==v); 0) (* Checks most of the invariants of the graph. For debugging purposes. *) let check_universes_invariants g = let n_edges = ref 0 in let n_nodes = ref 0 in UMap.iter (fun l u -> match u with | Canonical u -> UMap.iter (fun v strict -> incr n_edges; let v = repr g v in assert (topo_compare u v = -1); if u.klvl = v.klvl then assert (LSet.mem u.univ v.gtge || LSet.exists (fun l -> u == repr g l) v.gtge)) u.ltle; LSet.iter (fun v -> let v = repr g v in assert (v.klvl = u.klvl && (UMap.mem u.univ v.ltle || UMap.exists (fun l _ -> u == repr g l) v.ltle)) ) u.gtge; assert (u.status = NoMark); assert (Level.equal l u.univ); assert (u.ilvl > g.index); assert (not (UMap.mem u.univ u.ltle)); incr n_nodes | Equiv _ -> assert (not (Level.is_small l))) g.entries; assert (!n_edges = g.n_edges); assert (!n_nodes = g.n_nodes) let clean_ltle g ltle = UMap.fold (fun u strict acc -> let uu = (repr g u).univ in if Level.equal uu u then acc else ( let acc = UMap.remove u (fst acc) in if not strict && UMap.mem uu acc then (acc, true) else (UMap.add uu strict acc, true))) ltle (ltle, false) let clean_gtge g gtge = LSet.fold (fun u acc -> let uu = (repr g u).univ in if Level.equal uu u then acc else LSet.add uu (LSet.remove u (fst acc)), true) gtge (gtge, false) (* [get_ltle] and [get_gtge] return ltle and gtge arcs. Moreover, if one of these lists is dirty (e.g. points to a non-canonical node), these functions clean this node in the graph by removing some duplicate edges *) let get_ltle g u = let ltle, chgt_ltle = clean_ltle g u.ltle in if not chgt_ltle then u.ltle, u, g else let sz = UMap.cardinal u.ltle in let sz2 = UMap.cardinal ltle in let u = { u with ltle } in let g = change_node g u in let g = { g with n_edges = g.n_edges + sz2 - sz } in u.ltle, u, g let get_gtge g u = let gtge, chgt_gtge = clean_gtge g u.gtge in if not chgt_gtge then u.gtge, u, g else let u = { u with gtge } in let g = change_node g u in u.gtge, u, g (* [revert_graph] rollbacks the changes made to mutable fields in nodes in the graph. [to_revert] contains the touched nodes. *) let revert_graph to_revert g = List.iter (fun t -> match UMap.find t g.entries with | Equiv _ -> () | Canonical t -> t.status <- NoMark) to_revert exception AbortBackward of universes exception CycleDetected (* Implementation of the algorithm described in § 5.1 of the following paper: Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A new approach to incremental cycle detection and related problems. arXiv preprint arXiv:1112.0784. The "STEP X" comments contained in this file refers to the corresponding step numbers of the algorithm described in Section 5.1 of this paper. *) (* [delta] is the timeout for backward search. It might be useful to tune a multiplicative constant. *) let get_delta g = int_of_float (min (float_of_int g.n_edges ** 0.5) (float_of_int g.n_nodes ** (2./.3.))) let rec backward_traverse to_revert b_traversed count g x = let x = repr g x in let count = count - 1 in if count < 0 then begin revert_graph to_revert g; raise (AbortBackward g) end; if x.status = NoMark then begin x.status <- Visited; let to_revert = x.univ::to_revert in let gtge, x, g = get_gtge g x in let to_revert, b_traversed, count, g = LSet.fold (fun y (to_revert, b_traversed, count, g) -> backward_traverse to_revert b_traversed count g y) gtge (to_revert, b_traversed, count, g) in to_revert, x.univ::b_traversed, count, g end else to_revert, b_traversed, count, g let rec forward_traverse f_traversed g v_klvl x y = let y = repr g y in if y.klvl < v_klvl then begin let y = { y with klvl = v_klvl; gtge = if x == y then LSet.empty else LSet.singleton x.univ } in let g = change_node g y in let ltle, y, g = get_ltle g y in let f_traversed, g = UMap.fold (fun z _ (f_traversed, g) -> forward_traverse f_traversed g v_klvl y z) ltle (f_traversed, g) in y.univ::f_traversed, g end else if y.klvl = v_klvl && x != y then let g = change_node g { y with gtge = LSet.add x.univ y.gtge } in f_traversed, g else f_traversed, g let rec find_to_merge to_revert g x v = let x = repr g x in match x.status with | Visited -> false, to_revert | ToMerge -> true, to_revert | NoMark -> let to_revert = x::to_revert in if Level.equal x.univ v then begin x.status <- ToMerge; true, to_revert end else begin let merge, to_revert = LSet.fold (fun y (merge, to_revert) -> let merge', to_revert = find_to_merge to_revert g y v in merge' || merge, to_revert) x.gtge (false, to_revert) in x.status <- if merge then ToMerge else Visited; merge, to_revert end | _ -> assert false let get_new_edges g to_merge = (* Computing edge sets. *) let to_merge_lvl = List.fold_left (fun acc u -> UMap.add u.univ u acc) UMap.empty to_merge in let ltle = let fold _ n acc = let fold u strict acc = if strict then UMap.add u strict acc else if UMap.mem u acc then acc else UMap.add u false acc in UMap.fold fold n.ltle acc in UMap.fold fold to_merge_lvl UMap.empty in let ltle, _ = clean_ltle g ltle in let ltle = UMap.merge (fun _ a strict -> match a, strict with | Some _, Some true -> (* There is a lt edge inside the new component. This is a "bad cycle". *) raise CycleDetected | Some _, Some false -> None | _, _ -> strict ) to_merge_lvl ltle in let gtge = UMap.fold (fun _ n acc -> LSet.union acc n.gtge) to_merge_lvl LSet.empty in let gtge, _ = clean_gtge g gtge in let gtge = LSet.diff gtge (UMap.domain to_merge_lvl) in (ltle, gtge) let reorder g u v = (* STEP 2: backward search in the k-level of u. *) let delta = get_delta g in (* [v_klvl] is the chosen future level for u, v and all traversed nodes. *) let b_traversed, v_klvl, g = try let to_revert, b_traversed, _, g = backward_traverse [] [] delta g u in revert_graph to_revert g; let v_klvl = (repr g u).klvl in b_traversed, v_klvl, g with AbortBackward g -> (* Backward search was too long, use the next k-level. *) let v_klvl = (repr g u).klvl + 1 in [], v_klvl, g in let f_traversed, g = (* STEP 3: forward search. Contrary to what is described in the paper, we do not test whether v_klvl = u.klvl nor we assign v_klvl to v.klvl. Indeed, the first call to forward_traverse will do all that. *) forward_traverse [] g v_klvl (repr g v) v in (* STEP 4: merge nodes if needed. *) let to_merge, b_reindex, f_reindex = if (repr g u).klvl = v_klvl then begin let merge, to_revert = find_to_merge [] g u v in let r = if merge then List.filter (fun u -> u.status = ToMerge) to_revert, List.filter (fun u -> (repr g u).status <> ToMerge) b_traversed, List.filter (fun u -> (repr g u).status <> ToMerge) f_traversed else [], b_traversed, f_traversed in List.iter (fun u -> u.status <- NoMark) to_revert; r end else [], b_traversed, f_traversed in let to_reindex, g = match to_merge with | [] -> List.rev_append f_reindex b_reindex, g | n0::q0 -> (* Computing new root. *) let root, rank_rest = List.fold_left (fun ((best, rank_rest) as acc) n -> if n.rank >= best.rank then n, best.rank else acc) (n0, min_int) q0 in let ltle, gtge = get_new_edges g to_merge in (* Inserting the new root. *) let g = change_node g { root with ltle; gtge; rank = max root.rank (rank_rest + 1); } in (* Inserting shortcuts for old nodes. *) let g = List.fold_left (fun g n -> if Level.equal n.univ root.univ then g else enter_equiv g n.univ root.univ) g to_merge in (* Updating g.n_edges *) let oldsz = List.fold_left (fun sz u -> sz+UMap.cardinal u.ltle) 0 to_merge in let sz = UMap.cardinal ltle in let g = { g with n_edges = g.n_edges + sz - oldsz } in (* Not clear in the paper: we have to put the newly created component just between B and F. *) List.rev_append f_reindex (root.univ::b_reindex), g in (* STEP 5: reindex traversed nodes. *) List.fold_left use_index g to_reindex (* Assumes [u] and [v] are already in the graph. *) (* Does NOT assume that ucan != vcan. *) let insert_edge strict ucan vcan g = try let u = ucan.univ and v = vcan.univ in (* STEP 1: do we need to reorder nodes ? *) let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in (* STEP 6: insert the new edge in the graph. *) let u = repr g u in let v = repr g v in if u == v then if strict then raise CycleDetected else g else let g = try let oldstrict = UMap.find v.univ u.ltle in if strict && not oldstrict then change_node g { u with ltle = UMap.add v.univ true u.ltle } else g with Not_found -> { (change_node g { u with ltle = UMap.add v.univ strict u.ltle }) with n_edges = g.n_edges + 1 } in if u.klvl <> v.klvl || LSet.mem u.univ v.gtge then g else let v = { v with gtge = LSet.add u.univ v.gtge } in change_node g v with | CycleDetected as e -> raise e | e -> (** Unlikely event: fatal error or signal *) let () = cleanup_universes g in raise e let add_universe_gen vlev g = try let _arcv = UMap.find vlev g.entries in raise AlreadyDeclared with Not_found -> assert (g.index > min_int); let v = { univ = vlev; ltle = LMap.empty; gtge = LSet.empty; rank = 0; klvl = 0; ilvl = g.index; status = NoMark; } in let entries = UMap.add vlev (Canonical v) g.entries in { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges }, v let add_universe vlev strict g = let g, v = add_universe_gen vlev g in insert_edge strict (get_set_arc g) v g let add_universe_unconstrained vlev g = fst (add_universe_gen vlev g) exception Found_explanation of explanation let get_explanation strict u v g = let v = repr g v in let visited_strict = ref UMap.empty in let rec traverse strict u = if u == v then if strict then None else Some [] else if topo_compare u v = 1 then None else let visited = try not (UMap.find u.univ !visited_strict) || strict with Not_found -> false in if visited then None else begin visited_strict := UMap.add u.univ strict !visited_strict; try UMap.iter (fun u' strictu' -> match traverse (strict && not strictu') (repr g u') with | None -> () | Some exp -> let typ = if strictu' then Lt else Le in raise (Found_explanation ((typ, make u') :: exp))) u.ltle; None with Found_explanation exp -> Some exp end in let u = repr g u in if u == v then [(Eq, make v.univ)] else match traverse strict u with Some exp -> exp | None -> assert false let get_explanation strict u v g = Some (lazy (get_explanation strict u v g)) (* To compare two nodes, we simply do a forward search. We implement two improvements: - we ignore nodes that are higher than the destination; - we do a BFS rather than a DFS because we expect to have a short path (typically, the shortest path has length 1) *) exception Found of canonical_node list let search_path strict u v g = let rec loop to_revert todo next_todo = match todo, next_todo with | [], [] -> to_revert (* No path found *) | [], _ -> loop to_revert next_todo [] | (u, strict)::todo, _ -> if u.status = Visited || (u.status = WeakVisited && strict) then loop to_revert todo next_todo else let to_revert = if u.status = NoMark then u::to_revert else to_revert in u.status <- if strict then WeakVisited else Visited; if try UMap.find v.univ u.ltle || not strict with Not_found -> false then raise (Found to_revert) else begin let next_todo = UMap.fold (fun u strictu next_todo -> let strict = not strictu && strict in let u = repr g u in if u == v && not strict then raise (Found to_revert) else if topo_compare u v = 1 then next_todo else (u, strict)::next_todo) u.ltle next_todo in loop to_revert todo next_todo end in if u == v then not strict else try let res, to_revert = try false, loop [] [u, strict] [] with Found to_revert -> true, to_revert in List.iter (fun u -> u.status <- NoMark) to_revert; res with e -> (** Unlikely event: fatal error or signal *) let () = cleanup_universes g in raise e (** Uncomment to debug the cycle detection algorithm. *) (*let insert_edge strict ucan vcan g = check_universes_invariants g; let g = insert_edge strict ucan vcan g in check_universes_invariants g; let ucan = repr g ucan.univ in let vcan = repr g vcan.univ in assert (search_path strict ucan vcan g); g*) (** First, checks on universe levels *) let check_equal g u v = let arcu = repr g u and arcv = repr g v in arcu == arcv let check_eq_level g u v = u == v || check_equal g u v let check_smaller g strict u v = let arcu = repr g u and arcv = repr g v in if strict then search_path true arcu arcv g else is_prop_arc arcu || (is_set_arc arcu && not (is_prop_arc arcv)) || search_path false arcu arcv g (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Universe.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Universe.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || is_type0m_univ u || real_check_leq g u v let check_eq_univs g l1 l2 = real_check_leq g l1 l2 && real_check_leq g l2 l1 let check_eq g u v = Universe.equal u v || check_eq_univs g u v (* enforce_univ_eq g u v will force u=v if possible, will fail otherwise *) let rec enforce_univ_eq u v g = let ucan = repr g u in let vcan = repr g v in if topo_compare ucan vcan = 1 then enforce_univ_eq v u g else let g = insert_edge false ucan vcan g in (* Cannot fail *) try insert_edge false vcan ucan g with CycleDetected -> error_inconsistency Eq v u (get_explanation true u v g) (* enforce_univ_leq g u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let ucan = repr g u in let vcan = repr g v in try insert_edge false ucan vcan g with CycleDetected -> error_inconsistency Le u v (get_explanation true v u g) (* enforce_univ_lt u v will force u error_inconsistency Lt u v (get_explanation false v u g) let empty_universes = { entries = UMap.empty; index = 0; n_nodes = 0; n_edges = 0 } let initial_universes = let set_arc = Canonical { univ = Level.set; ltle = LMap.empty; gtge = LSet.empty; rank = big_rank; klvl = 0; ilvl = (-1); status = NoMark; } in let prop_arc = Canonical { univ = Level.prop; ltle = LMap.empty; gtge = LSet.empty; rank = big_rank; klvl = 0; ilvl = 0; status = NoMark; } in let entries = UMap.add Level.set set_arc (UMap.singleton Level.prop prop_arc) in let empty = { entries; index = (-2); n_nodes = 2; n_edges = 0 } in enforce_univ_lt Level.prop Level.set empty let is_initial_universes g = UMap.equal (==) g.entries initial_universes.entries let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g let merge_constraints c g = Constraint.fold enforce_constraint c g let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c let leq_expr (u,m) (v,n) = let d = match m - n with | 1 -> Lt | diff -> assert (diff <= 0); Le in (u,d,v) let enforce_leq_alg u v g = let enforce_one (u,v) = function | Inr _ as orig -> orig | Inl (cstrs,g) as orig -> if check_smaller_expr g u v then orig else (let c = leq_expr u v in match enforce_constraint c g with | g -> Inl (Constraint.add c cstrs,g) | exception (UniverseInconsistency _ as e) -> Inr e) in (* max(us) <= max(vs) <-> forall u in us, exists v in vs, u <= v *) let c = Universe.map (fun u -> Universe.map (fun v -> (u,v)) v) u in let c = List.cartesians enforce_one (Inl (Constraint.empty,g)) c in (* We pick a best constraint: smallest number of constraints, not an error if possible. *) let order x y = match x, y with | Inr _, Inr _ -> 0 | Inl _, Inr _ -> -1 | Inr _, Inl _ -> 1 | Inl (c,_), Inl (c',_) -> Int.compare (Constraint.cardinal c) (Constraint.cardinal c') in match List.min order c with | Inl x -> x | Inr e -> raise e (* sanity check wrapper *) let enforce_leq_alg u v g = let _,g as cg = enforce_leq_alg u v g in assert (check_leq g u v); cg (* Normalization *) (** [normalize_universes g] returns a graph where all edges point directly to the canonical representent of their target. The output graph should be equivalent to the input graph from a logical point of view, but optimized. We maintain the invariant that the key of a [Canonical] element is its own name, by keeping [Equiv] edges. *) let normalize_universes g = let g = { g with entries = UMap.map (fun entry -> match entry with | Equiv u -> Equiv ((repr g u).univ) | Canonical ucan -> Canonical { ucan with rank = 1 }) g.entries } in UMap.fold (fun _ u g -> match u with | Equiv u -> g | Canonical u -> let _, u, g = get_ltle g u in let _, _, g = get_gtge g u in g) g.entries g let constraints_of_universes g = let module UF = Unionfind.Make (LSet) (LMap) in let uf = UF.create () in let constraints_of u v acc = match v with | Canonical {univ=u; ltle} -> UMap.fold (fun v strict acc-> let typ = if strict then Lt else Le in Constraint.add (u,typ,v) acc) ltle acc | Equiv v -> UF.union u v uf; acc in let csts = UMap.fold constraints_of g.entries Constraint.empty in csts, UF.partition uf (* domain g.entries = kept + removed *) let constraints_for ~kept g = (* rmap: partial map from canonical universes to kept universes *) let rmap, csts = LSet.fold (fun u (rmap,csts) -> let arcu = repr g u in if LSet.mem arcu.univ kept then LMap.add arcu.univ arcu.univ rmap, enforce_eq_level u arcu.univ csts else match LMap.find arcu.univ rmap with | v -> rmap, enforce_eq_level u v csts | exception Not_found -> LMap.add arcu.univ u rmap, csts) kept (LMap.empty,Constraint.empty) in let rec add_from u csts todo = match todo with | [] -> csts | (v,strict)::todo -> let v = repr g v in (match LMap.find v.univ rmap with | v -> let d = if strict then Lt else Le in let csts = Constraint.add (u,d,v) csts in add_from u csts todo | exception Not_found -> (* v is not equal to any kept universe *) let todo = LMap.fold (fun v' strict' todo -> (v',strict || strict') :: todo) v.ltle todo in add_from u csts todo) in LSet.fold (fun u csts -> let arc = repr g u in LMap.fold (fun v strict csts -> add_from u csts [v,strict]) arc.ltle csts) kept csts (** [sort_universes g] builds a totally ordered universe graph. The output graph should imply the input graph (and the implication will be strict most of the time), but is not necessarily minimal. Moreover, it adds levels [Type.n] to identify universes at level n. An artificial constraint Set < Type.2 is added to ensure that Type.n and small universes are not merged. Note: the result is unspecified if the input graph already contains [Type.n] nodes (calling a module Type is probably a bad idea anyway). *) let sort_universes g = let cans = UMap.fold (fun _ u l -> match u with | Equiv _ -> l | Canonical can -> can :: l ) g.entries [] in let cans = List.sort topo_compare cans in let lowest_levels = UMap.mapi (fun u _ -> if Level.is_small u then 0 else 2) (UMap.filter (fun _ u -> match u with Equiv _ -> false | Canonical _ -> true) g.entries) in let lowest_levels = List.fold_left (fun lowest_levels can -> let lvl = UMap.find can.univ lowest_levels in UMap.fold (fun u' strict lowest_levels -> let cost = if strict then 1 else 0 in let u' = (repr g u').univ in UMap.modify u' (fun _ lvl0 -> max lvl0 (lvl+cost)) lowest_levels) can.ltle lowest_levels) lowest_levels cans in let max_lvl = UMap.fold (fun _ a b -> max a b) lowest_levels 0 in let mp = Names.DirPath.make [Names.Id.of_string "Type"] in let types = Array.init (max_lvl + 1) (function | 0 -> Level.prop | 1 -> Level.set | n -> Level.make mp (n-2)) in let g = Array.fold_left (fun g u -> let g, u = safe_repr g u in change_node g { u with rank = big_rank }) g types in let g = if max_lvl >= 2 then enforce_univ_lt Level.set types.(2) g else g in let g = UMap.fold (fun u lvl g -> enforce_univ_eq u (types.(lvl)) g) lowest_levels g in normalize_universes g (** Subtyping of polymorphic contexts *) let check_subtype univs ctxT ctx = if AUContext.size ctxT == AUContext.size ctx then let (inst, cst) = UContext.dest (AUContext.repr ctx) in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v false accu in let univs = Array.fold_left push univs (Instance.to_array inst) in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Instances *) let check_eq_instances g t1 t2 = let t1 = Instance.to_array t1 in let t2 = Instance.to_array t2 in t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) (** Pretty-printing *) let pr_arc prl = function | _, Canonical {univ=u; ltle} -> if UMap.is_empty ltle then mt () else prl u ++ str " " ++ v 0 (pr_sequence (fun (v, strict) -> (if strict then str "< " else str "<= ") ++ prl v) (UMap.bindings ltle)) ++ fnl () | u, Equiv v -> prl u ++ str " = " ++ prl v ++ fnl () let pr_universes prl g = let graph = UMap.fold (fun u a l -> (u,a)::l) g.entries [] in prlist (pr_arc prl) graph (* Dumping constraints to a file *) let dump_universes output g = let dump_arc u = function | Canonical {univ=u; ltle} -> let u_str = Level.to_string u in UMap.iter (fun v strict -> let typ = if strict then Lt else Le in output typ u_str (Level.to_string v)) ltle; | Equiv v -> output Eq (Level.to_string u) (Level.to_string v) in UMap.iter dump_arc g.entries (** Profiling *) let merge_constraints = if Flags.profile then let key = CProfile.declare_profile "merge_constraints" in CProfile.profile2 key merge_constraints else merge_constraints let check_constraints = if Flags.profile then let key = CProfile.declare_profile "check_constraints" in CProfile.profile2 key check_constraints else check_constraints let check_eq = if Flags.profile then let check_eq_key = CProfile.declare_profile "check_eq" in CProfile.profile3 check_eq_key check_eq else check_eq let check_leq = if Flags.profile then let check_leq_key = CProfile.declare_profile "check_leq" in CProfile.profile3 check_leq_key check_leq else check_leq