(* $Id$ *) open Pp open Util open Names open Univ open Generic open Term open Evd open Constant open Inductive open Sign open Environ open Reduction open Instantiate open Type_errors let make_judge v tj = { uj_val = v; uj_type = tj.body; uj_kind= DOP0 (Sort tj.typ) } let j_val_only j = j.uj_val (* Faut-il caster ? *) let j_val = j_val_only let j_val_cast j = mkCast j.uj_val j.uj_type let typed_type_of_judgment env j = match whd_betadeltaiota env j.uj_type with | DOP0(Sort s) -> { body = j.uj_val; typ = s } | _ -> error_not_type CCI env j.uj_val let assumption_of_judgement env j = match whd_betadeltaiota env j.uj_type with | DOP0(Sort s) -> { body = j.uj_val; typ = s } | _ -> error_assumption CCI env j.uj_val (* Type of a de Bruijn index. *) let relative env n = try let (_,typ) = lookup_rel n env in { uj_val = Rel n; uj_type = lift n typ.body; uj_kind = DOP0 (Sort typ.typ) } with Not_found -> error_unbound_rel CCI env n (* Management of context of variables. *) (* Checks if a context of variable is included in another one. *) let hyps_inclusion env (idl1,tyl1) (idl2,tyl2) = let rec aux = function | ([], [], _, _) -> true | (_, _, [], []) -> false | ((id1::idl1), (ty1::tyl1), idl2, tyl2) -> let rec search = function | ([], []) -> false | ((id2::idl2), (ty2::tyl2)) -> if id1 = id2 then (is_conv env (body_of_type ty1) (body_of_type ty2)) & aux (idl1,tyl1,idl2,tyl2) else search (idl2,tyl2) | (_, _) -> invalid_arg "hyps_inclusion" in search (idl2,tyl2) | (_, _, _, _) -> invalid_arg "hyps_inclusion" in aux (idl1,tyl1,idl2,tyl2) (* Checks if the given context of variables [hyps] is included in the current context of [env]. *) let construct_reference id env hyps = let hyps' = get_globals (context env) in if hyps_inclusion env hyps hyps' then Array.of_list (List.map (fun id -> VAR id) (ids_of_sign hyps)) else error_reference_variables CCI env id let check_hyps id env hyps = let hyps' = get_globals (context env) in if not (hyps_inclusion env hyps hyps') then error_reference_variables CCI env id (* Instantiation of terms on real arguments. *) let type_of_constant env c = let (sp,args) = destConst c in let cb = lookup_constant sp env in let hyps = cb.const_hyps in check_hyps (basename sp) env hyps; instantiate_type (ids_of_sign hyps) cb.const_type (Array.to_list args) (* Existentials. *) let type_of_existential env c = let (sp,args) = destConst c in let info = Evd.map (evar_map env) sp in let hyps = info.evar_hyps in check_hyps (basename sp) env hyps; instantiate_type (ids_of_sign hyps) info.evar_concl (Array.to_list args) (* Constants or existentials. *) let type_of_constant_or_existential env c = if is_existential c then type_of_existential env c else type_of_constant env c (* Inductive types. *) let instantiate_arity mis = let ids = ids_of_sign mis.mis_mib.mind_hyps in let args = Array.to_list mis.mis_args in let arity = mis.mis_mip.mind_arity in { body = instantiate_constr ids arity.body args; typ = arity.typ } let type_of_inductive env i = let mis = lookup_mind_specif i env in let hyps = mis.mis_mib.mind_hyps in check_hyps (basename mis.mis_sp) env hyps; instantiate_arity mis (* Constructors. *) let instantiate_lc mis = let hyps = mis.mis_mib.mind_hyps in let lc = mis.mis_mip.mind_lc in instantiate_constr (ids_of_sign hyps) lc (Array.to_list mis.mis_args) let type_of_constructor env c = let (sp,i,j,args) = destMutConstruct c in let mind = DOPN (MutInd (sp,i), args) in let recmind = check_mrectype_spec env mind in let mis = lookup_mind_specif recmind env in check_hyps (basename mis.mis_sp) env (mis.mis_mib.mind_hyps); let specif = instantiate_lc mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) in if j > mis_nconstr mis then anomaly "type_of_constructor" else sAPPViList (j-1) specif (list_tabulate make_ik (mis_ntypes mis)) (* gives the vector of constructors and of types of constructors of an inductive definition correctly instanciated *) let mis_type_mconstructs mis = let specif = instantiate_lc mis and ntypes = mis_ntypes mis and nconstr = mis_nconstr mis in let make_ik k = DOPN (MutInd (mis.mis_sp,k), mis.mis_args) and make_ck k = DOPN (MutConstruct ((mis.mis_sp,mis.mis_tyi),k+1), mis.mis_args) in (Array.init nconstr make_ck, sAPPVList specif (list_tabulate make_ik ntypes)) let type_mconstructs env mind = let redmind = check_mrectype_spec env mind in let mis = lookup_mind_specif redmind env in mis_type_mconstructs mis (* Case. *) let rec sort_of_arity env c = match whd_betadeltaiota env c with | DOP0(Sort( _)) as c' -> c' | DOP2(Prod,_,DLAM(_,c2)) -> sort_of_arity env c2 | _ -> invalid_arg "sort_of_arity" let make_arity_dep env k = let rec mrec c m = match whd_betadeltaiota env c with | DOP0(Sort _) -> mkArrow m k | DOP2(Prod,b,DLAM(n,c_0)) -> prod_name env (n,b,mrec c_0 (applist(lift 1 m,[Rel 1]))) | _ -> invalid_arg "make_arity_dep" in mrec let make_arity_nodep env k = let rec mrec c = match whd_betadeltaiota env c with | DOP0(Sort _) -> k | DOP2(Prod,b,DLAM(x,c_0)) -> DOP2(Prod,b,DLAM(x,mrec c_0)) | _ -> invalid_arg "make_arity_nodep" in mrec let error_elim_expln env kp ki = if is_info_sort env kp && not (is_info_sort env ki) then "non-informative objects may not construct informative ones." else match (kp,ki) with | (DOP0(Sort (Type _)), DOP0(Sort (Prop _))) -> "strong elimination on non-small inductive types leads to paradoxes." | _ -> "wrong arity" exception Arity of (constr * constr * string) option let is_correct_arity env kelim (c,p) = let rec srec ind (pt,t) = try (match whd_betadeltaiota env pt, whd_betadeltaiota env t with | DOP2(Prod,a1,DLAM(_,a2)), DOP2(Prod,a1',DLAM(_,a2')) -> if is_conv env a1 a1' then srec (applist(lift 1 ind,[Rel 1])) (a2,a2') else raise (Arity None) | DOP2(Prod,a1,DLAM(_,a2)), ki -> let k = whd_betadeltaiota env a2 in let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if is_conv env a1 ind then if List.exists (base_sort_cmp CONV ksort) kelim then (true,k) else raise (Arity (Some(k,ki,error_elim_expln env k ki))) else raise (Arity None) | k, DOP2(Prod,_,_) -> raise (Arity None) | k, ki -> let ksort = (match k with DOP0(Sort s) -> s | _ -> raise (Arity None)) in if List.exists (base_sort_cmp CONV ksort) kelim then false,k else raise (Arity (Some(k,ki,error_elim_expln env k ki)))) with Arity kinds -> let listarity = (List.map (fun s -> make_arity_dep env (DOP0(Sort s)) t ind) kelim) @(List.map (fun s -> make_arity_nodep env (DOP0(Sort s)) t) kelim) in error_elim_arity CCI env ind listarity c p pt kinds in srec let cast_instantiate_arity mis = let tty = instantiate_arity mis in DOP2 (Cast, tty.body, DOP0 (Sort tty.typ)) let find_case_dep_nparams env (c,p) (mind,largs) typP = let mis = lookup_mind_specif mind env in let nparams = mis_nparams mis and kelim = mis_kelim mis and t = cast_instantiate_arity mis in let (globargs,la) = list_chop nparams largs in let glob_t = hnf_prod_applist env "find_elim_boolean" t globargs in let arity = applist(mind,globargs) in let (dep,_) = is_correct_arity env kelim (c,p) arity (typP,glob_t) in (dep, (nparams, globargs,la)) let type_one_branch_dep (env,nparams,globargs,p) co t = let rec typrec n c = match whd_betadeltaiota env c with | DOP2(Prod,a1,DLAM(x,a2)) -> prod_name env (x,a1,typrec (n+1) a2) | x -> let lAV = destAppL (ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in applist (appvect ((lift n p),vargs), [applist(co,((List.map (lift n) globargs)@(rel_list 0 n)))]) in typrec 0 (hnf_prod_applist env "type_case" t globargs) let type_one_branch_nodep (env,nparams,globargs,p) t = let rec typrec n c = match whd_betadeltaiota env c with | DOP2(Prod,a1,DLAM(x,a2)) -> DOP2(Prod,a1,DLAM(x,typrec (n+1) a2)) | x -> let lAV = destAppL(ensure_appl x) in let (_,vargs) = array_chop (nparams+1) lAV in appvect (lift n p,vargs) in typrec 0 (hnf_prod_applist env "type_case" t globargs) (* type_case_branches type un

Case c of ... end ct = type de c, si inductif il a la forme APP(mI,largs), sinon raise Induc pt = sorte de p type_case_branches retourne (lb, lr); lb est le vecteur des types attendus dans les branches du Case; lr est le type attendu du resultat *) let type_case_branches env ct pt p c = try let ((mI,largs) as indt) = find_mrectype env ct in let (dep,(nparams,globargs,la)) = find_case_dep_nparams env (c,p) indt pt in let (lconstruct,ltypconstr) = type_mconstructs env mI in if dep then (mI, array_map2 (type_one_branch_dep (env,nparams,globargs,p)) lconstruct ltypconstr, beta_applist (p,(la@[c]))) else (mI, Array.map (type_one_branch_nodep (env,nparams,globargs,p)) ltypconstr, beta_applist (p,la)) with Induc -> error_case_not_inductive CCI env c ct let check_branches_message env (c,ct) (explft,lft) = let n = Array.length explft and expn = Array.length lft in let rec check_conv i = if not (i = n) then if not (is_conv_leq env lft.(i) (explft.(i))) then error_ill_formed_branch CCI env c i (nf_betaiota env lft.(i)) (nf_betaiota env explft.(i)) else check_conv (i+1) in if n<>expn then error_number_branches CCI env c ct expn else check_conv 0 let type_of_case env pj cj lfj = let lft = Array.map (fun j -> j.uj_type) lfj in let (mind,bty,rslty) = type_case_branches env cj.uj_type pj.uj_type pj.uj_val cj.uj_val in let kind = sort_of_arity env pj.uj_type in check_branches_message env (cj.uj_val,cj.uj_type) (bty,lft); { uj_val = mkMutCaseA (ci_of_mind mind) (j_val pj) (j_val cj) (Array.map j_val lfj); uj_type = rslty; uj_kind = kind } (* Prop and Set *) let type_of_prop_or_set cts = { uj_val = DOP0(Sort(Prop cts)); uj_type = DOP0(Sort type_0); uj_kind = DOP0(Sort type_1) } (* Type of Type(i). *) let type_of_type u g = let (uu,g') = super u g in let (uuu,g'') = super uu g' in { uj_val = DOP0 (Sort (Type u)); uj_type = DOP0 (Sort (Type uu)); uj_kind = DOP0 (Sort (Type uuu)) }, g'' let type_of_sort c g = match c with | DOP0 (Sort (Type u)) -> let (uu,g') = super u g in mkType uu, g' | DOP0 (Sort (Prop _)) -> mkType prop_univ, g | DOP0 (Implicit) -> mkImplicit, g | _ -> invalid_arg "type_of_sort" (* Type of a lambda-abstraction. *) let sort_of_product domsort rangsort g0 = match rangsort with (* Product rule (s,Prop,Prop) *) | Prop _ -> rangsort, g0 | Type u2 -> (match domsort with (* Product rule (Prop,Type_i,Type_i) *) | Prop _ -> rangsort, g0 (* Product rule (Type_i,Type_i,Type_i) *) | Type u1 -> let (u12,g1) = sup u1 u2 g0 in Type u12, g1) let abs_rel env name var j = let rngtyp = whd_betadeltaiota env j.uj_kind in let cvar = incast_type var in let (s,g) = sort_of_product var.typ (destSort rngtyp) (universes env) in { uj_val = mkLambda name cvar (j_val j); uj_type = mkProd name cvar j.uj_type; uj_kind = mkSort s }, g (* Type of a product. *) let gen_rel env name var j = let jtyp = whd_betadeltaiota env j.uj_type in let jkind = whd_betadeltaiota env j.uj_kind in let j = { uj_val = j.uj_val; uj_type = jtyp; uj_kind = jkind } in if isprop jkind then error "Proof objects can only be abstracted" else match jtyp with | DOP0(Sort s) -> let (s',g) = sort_of_product var.typ s (universes env) in let res_type = mkSort s' in let (res_kind,g') = type_of_sort res_type g in { uj_val = mkProd name (mkCast var.body (mkSort var.typ)) (j_val_cast j); uj_type = res_type; uj_kind = res_kind }, g' | _ -> error_generalization CCI env (name,var) j.uj_val (* Type of a cast. *) let cast_rel env cj tj = if is_conv_leq env cj.uj_type tj.uj_val then { uj_val = j_val_only cj; uj_type = tj.uj_val; uj_kind = whd_betadeltaiota env tj.uj_type } else error_actual_type CCI env cj.uj_val cj.uj_type tj.uj_val (* Type of an application. *) let apply_rel_list env0 nocheck argjl funj = let rec apply_rec env typ = function | [] -> { uj_val = applist (j_val_only funj, List.map j_val_only argjl); uj_type = typ; uj_kind = funj.uj_kind }, universes env | hj::restjl -> match whd_betadeltaiota env typ with | DOP2(Prod,c1,DLAM(_,c2)) -> if nocheck then apply_rec env (subst1 hj.uj_val c2) restjl else (match conv_leq env hj.uj_type c1 with | Convertible g -> let env' = set_universes g env in apply_rec env' (subst1 hj.uj_val c2) restjl | NotConvertible -> error_cant_apply CCI env "Type Error" funj argjl) | _ -> error_cant_apply CCI env "Non-functional construction" funj argjl in apply_rec env0 funj.uj_type argjl (* Fixpoints. *) (* Checking function for terms containing existential variables. The function noccur_with_meta consideres the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let noccur_with_meta sigma n m term = let rec occur_rec n = function | Rel(p) -> if n<=p & p () | DOPN(AppL,cl) -> (match strip_outer_cast cl.(0) with | DOP0 (Meta _) -> () | _ -> Array.iter (occur_rec n) cl) | DOPN(Const sp, cl) when Evd.in_dom sigma sp -> () | DOPN(op,cl) -> Array.iter (occur_rec n) cl | DOPL(_,cl) -> List.iter (occur_rec n) cl | DOP0(_) -> () | DOP1(_,c) -> occur_rec n c | DOP2(_,c1,c2) -> occur_rec n c1; occur_rec n c2 | DLAM(_,c) -> occur_rec (n+1) c | DLAMV(_,v) -> Array.iter (occur_rec (n+1)) v in try (occur_rec n term; true) with Occur -> false (* Check if t is a subterm of Rel n, and gives its specification, assuming lst already gives index of subterms with corresponding specifications of recursive arguments *) (* A powerful notion of subterm *) let find_sorted_assoc p = let rec findrec = function | (a,ta)::l -> if a < p then findrec l else if a = p then ta else raise Not_found | _ -> raise Not_found in findrec let map_lift_fst_n m = List.map (function (n,t)->(n+m,t)) let map_lift_fst = map_lift_fst_n 1 let rec instantiate_recarg sp lrc ra = match ra with | Mrec(j) -> Imbr(sp,j,lrc) | Imbr(sp1,k,l) -> Imbr(sp1,k, List.map (instantiate_recarg sp lrc) l) | Norec -> Norec | Param(k) -> List.nth lrc k (* propagate checking for F,incorporating recursive arguments *) let check_term env mind_recvec f = let rec crec n l (lrec,c) = match (lrec,strip_outer_cast c) with | (Param(_)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) l' (lr,b) | (Norec::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) l' (lr,b) | (Mrec(i)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in crec (n+1) ((1,mind_recvec.(i))::l') (lr,b) | (Imbr(sp,i,lrc)::lr,DOP2(Lambda,_,DLAM(_,b))) -> let l' = map_lift_fst l in let sprecargs = mis_recargs (lookup_mind_specif (mkMutInd sp i [||]) env) in let lc = Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i) in crec (n+1) ((1,lc)::l') (lr,b) | _,f_0 -> f n l f_0 in crec let is_inst_var env k c = match whd_betadeltaiota_stack env c [] with | (Rel n,_) -> n=k | _ -> false let is_subterm_specif env lcx mind_recvec = let rec crec n lst c = match whd_betadeltaiota_stack env c [] with | ((Rel k),_) -> find_sorted_assoc k lst | (DOPN(MutCase _,_) as x,_) -> let ( _,_,c,br) = destCase x in if Array.length br = 0 then [||] else let lcv = (try if is_inst_var env n c then lcx else (crec n lst c) with Not_found -> (Array.create (Array.length br) [])) in assert (Array.length br = Array.length lcv); let stl = array_map2 (fun lc a -> check_term env mind_recvec crec n lst (lc,a)) lcv br in stl.(0) | (DOPN(Fix(_),la) as mc,l) -> let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in let nbfix = List.length funnames in let decrArg = recindxs.(i) in let theBody = bodies.(i) in let (gamma,strippedBody) = decompose_lam_n (decrArg+1) theBody in let absTypes = List.map snd gamma in let nbOfAbst = nbfix+decrArg+1 in let newlst = if List.length l < (decrArg+1) then ((nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst)) else let theDecrArg = List.nth l decrArg in let recArgsDecrArg = try (crec n lst theDecrArg) with Not_found -> Array.create 0 [] in if (Array.length recArgsDecrArg)=0 then (nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst) else (1,recArgsDecrArg) :: (nbOfAbst,lcx) :: (map_lift_fst_n nbOfAbst lst) in crec (n+nbOfAbst) newlst strippedBody | (DOP2(Lambda,_,DLAM(_,b)),[]) -> let lst' = map_lift_fst lst in crec (n+1) lst' b (*** Experimental change *************************) | (DOP0(Meta _),_) -> [||] | _ -> raise Not_found in crec let is_subterm env lcx mind_recvec n lst c = try let _ = is_subterm_specif env lcx mind_recvec n lst c in true with Not_found -> false (* Auxiliary function: it checks a condition f depending on a deBrujin index for a certain number of abstractions *) let rec check_subterm_rec_meta env vectn k def = (k < 0) or (let nfi = Array.length vectn in (* check fi does not appear in the k+1 first abstractions, gives the type of the k+1-eme abstraction *) let rec check_occur n def = (match strip_outer_cast def with | DOP2(Lambda,a,DLAM(_,b)) -> if noccur_with_meta (evar_map env) n nfi a then if n = k+1 then (a,b) else check_occur (n+1) b else error "Bad occurrence of recursive call" | _ -> error "Not enough abstractions in the definition") in let (c,d) = check_occur 1 def in let (mI, largs) = (try find_minductype env c with Induc -> error "Recursive definition on a non inductive type") in let (sp,tyi,_) = destMutInd mI in let mind_recvec = mis_recargs (lookup_mind_specif mI env) in let lcx = mind_recvec.(tyi) in (* n = decreasing argument in the definition; lst = a mapping var |-> recargs t = the term to be checked *) let rec check_rec_call n lst t = (* n gives the index of the recursive variable *) (noccur_with_meta (evar_map env) (n+k+1) nfi t) or (* no recursive call in the term *) (match whd_betadeltaiota_stack env t [] with | (Rel p,l) -> if n+k+1 <= p & p < n+k+nfi+1 then (* recursive call *) let glob = nfi+n+k-p in (* the index of the recursive call *) let np = vectn.(glob) in (* the decreasing arg of the rec call *) if List.length l > np then (match list_chop np l with (la,(z::lrest)) -> if (is_subterm env lcx mind_recvec n lst z) then List.for_all (check_rec_call n lst) (la@lrest) else error "Recursive call applied to an illegal term" | _ -> assert false) else error "Not enough arguments for the recursive call" else List.for_all (check_rec_call n lst) l | (DOPN(MutCase _,_) as mc,l) -> let (ci,p,c_0,lrest) = destCase mc in let lc = (try if is_inst_var env n c_0 then lcx else is_subterm_specif env lcx mind_recvec n lst c_0 with Not_found -> Array.create (Array.length lrest) []) in (array_for_all2 (fun c_0 a -> check_term env mind_recvec (check_rec_call) n lst (c_0,a)) lc lrest) && (List.for_all (check_rec_call n lst) (c_0::p::l)) (* Enables to traverse Fixpoint definitions in a more intelligent way, ie, the rule : if - g = Fix g/1 := [y1:T1]...[yp:Tp]e & - f is guarded with respect to the set of pattern variables S in a1 ... am & - f is guarded with respect to the set of pattern variables S in T1 ... Tp & - ap is a sub-term of the formal argument of f & - f is guarded with respect to the set of pattern variables S+{yp} in e then f is guarded with respect to S in (g a1 ... am). Eduardo 7/9/98 *) | (DOPN(Fix(_),la) as mc,l) -> (List.for_all (check_rec_call n lst) l) && let (recindxs,i,typarray,funnames,bodies) = destUntypedFix mc in let nbfix = List.length funnames in let decrArg = recindxs.(i) in if (List.length l < (decrArg+1)) then (array_for_all (check_rec_call n lst) la) else let theDecrArg = List.nth l decrArg in let recArgsDecrArg = try (is_subterm_specif env lcx mind_recvec n lst theDecrArg) with Not_found -> Array.create 0 [] in if (Array.length recArgsDecrArg)=0 then array_for_all (check_rec_call n lst) la else let theBody = bodies.(i) in let (gamma,strippedBody) = decompose_lam_n (decrArg+1) theBody in let absTypes = List.map snd gamma in let nbOfAbst = nbfix+decrArg+1 in let newlst = ((1,recArgsDecrArg)::(map_lift_fst_n nbOfAbst lst)) in ((array_for_all (fun t -> check_rec_call n lst t) typarray) && (list_for_all_i (fun n -> check_rec_call n lst) n absTypes) & (check_rec_call (n+nbOfAbst) newlst strippedBody)) | (DOP2(_,a,b),l) -> (check_rec_call n lst a) && (check_rec_call n lst b) && (List.for_all (check_rec_call n lst) l) | (DOPN(_,la),l) -> (array_for_all (check_rec_call n lst) la) && (List.for_all (check_rec_call n lst) l) | (DOP0 (Meta _),l) -> true | (DLAM(_,t),l) -> (check_rec_call (n+1) (map_lift_fst lst) t) && (List.for_all (check_rec_call n lst) l) | (DLAMV(_,vt),l) -> (array_for_all (check_rec_call (n+1) (map_lift_fst lst)) vt) && (List.for_all (check_rec_call n lst) l) | (_,l) -> List.for_all (check_rec_call n lst) l ) in check_rec_call 1 [] d) (* vargs is supposed to be built from A1;..Ak;[f1]..[fk][|d1;..;dk|] and vdeft is [|t1;..;tk|] such that f1:A1,..,fk:Ak |- di:ti nvect is [|n1;..;nk|] which gives for each recursive definition the inductive-decreasing index the function checks the convertibility of ti with Ai *) let check_fix env = function | DOPN(Fix(nvect,j),vargs) -> let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let ln = Array.length nvect and la = Array.length varit in if ln <> la then error "Ill-formed fix term" else let (lna,vdefs) = decomp_DLAMV_name ln ldef in let vlna = Array.of_list lna in let check_type i = try let _ = check_subterm_rec_meta env nvect nvect.(i) vdefs.(i) in () with UserError (s,str) -> error_ill_formed_rec_body CCI env str lna i vdefs in for i = 0 to ln-1 do check_type i done | _ -> assert false (* Co-fixpoints. *) let check_guard_rec_meta env nbfix def deftype = let rec codomain_is_coind c = match whd_betadeltaiota env (strip_outer_cast c) with | DOP2(Prod,a,DLAM(_,b)) -> codomain_is_coind b | b -> (try find_mcoinductype env b with | Induc -> error "The codomain is not a coinductive type" | _ -> error "Type of Cofix function not as expected") in let (mI, _) = codomain_is_coind deftype in let (sp,tyi,_) = destMutInd mI in let lvlra = (mis_recargs (lookup_mind_specif mI env)) in let vlra = lvlra.(tyi) in let evd = evar_map env in let rec check_rec_call alreadygrd n vlra t = if (noccur_with_meta evd n nbfix t) then true else match whd_betadeltaiota_stack env t [] with | (DOP0 (Meta _), l) -> true | (Rel p,l) -> if n <= p && p < n+nbfix then (* recursive call *) if alreadygrd then if List.for_all (noccur_with_meta evd n nbfix) l then true else error "Nested recursive occurrences" else error "Unguarded recursive call" else error "check_guard_rec_meta: ???" | (DOPN ((MutConstruct((x,y),i)),l), args) -> let lra =vlra.(i-1) in let mI = DOPN(MutInd(x,y),l) in let _,realargs = list_chop (mind_nparams env mI) args in let rec process_args_of_constr l lra = match l with | [] -> true | t::lr -> (match lra with | [] -> anomalylabstrm "check_guard_rec_meta" [< 'sTR "a constructor with an empty list"; 'sTR "of recargs is being applied" >] | (Mrec i)::lrar -> let newvlra = lvlra.(i) in (check_rec_call true n newvlra t) && (process_args_of_constr lr lrar) | (Imbr(sp,i,lrc)::lrar) -> let mis = lookup_mind_specif (mkMutInd sp i [||]) env in let sprecargs = mis_recargs mis in let lc = (Array.map (List.map (instantiate_recarg sp lrc)) sprecargs.(i)) in (check_rec_call true n lc t) & (process_args_of_constr lr lrar) | _::lrar -> if (noccur_with_meta evd n nbfix t) then (process_args_of_constr lr lrar) else error "Recursive call inside a non-recursive argument of constructor") in (process_args_of_constr realargs lra) | (DOP2(Lambda,a,DLAM(_,b)),[]) -> if (noccur_with_meta evd n nbfix a) then check_rec_call alreadygrd (n+1) vlra b else error "Recursive call in the type of an abstraction" | (DOPN(CoFix(j),vargs),l) -> let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let la = Array.length varit in let (lna,vdefs) = decomp_DLAMV_name la ldef in let vlna = Array.of_list lna in if (array_for_all (noccur_with_meta evd n nbfix) varit) then (array_for_all (check_rec_call alreadygrd (n+1) vlra) vdefs) && (List.for_all (check_rec_call alreadygrd (n+1) vlra) l) else error "Recursive call in the type of a declaration" | (DOPN(MutCase _,_) as mc,l) -> let (_,p,c,vrest) = destCase mc in if (noccur_with_meta evd n nbfix p) then if (noccur_with_meta evd n nbfix c) then if (List.for_all (noccur_with_meta evd n nbfix) l) then (array_for_all (check_rec_call alreadygrd n vlra) vrest) else error "Recursive call in the argument of a function defined by cases" else error "Recursive call in the argument of a case expression" else error "Recursive call in the type of a Case expression" | _ -> error "Definition not in guarded form" in check_rec_call false 1 vlra def (* The function which checks that the whole block of definitions satisfies the guarded condition *) let check_cofix env f = match f with | DOPN(CoFix(j),vargs) -> let nbfix = let nv = Array.length vargs in if nv < 2 then error "Ill-formed recursive definition" else nv-1 in let varit = Array.sub vargs 0 nbfix in let ldef = array_last vargs in let la = Array.length varit in let (lna,vdefs) = decomp_DLAMV_name la ldef in let vlna = Array.of_list lna in let check_type i = (try let _ = check_guard_rec_meta env nbfix vdefs.(i) varit.(i) in () with UserError (s,str) -> error_ill_formed_rec_body CCI env str lna i vdefs) in for i = 0 to nbfix-1 do check_type i done | _ -> assert false (* Checks the type of a (co)fixpoint. Fix and CoFix are typed the same way; only the guard condition differs. *) exception IllBranch of int let type_fixpoint env lna lar vdefj = let lt = Array.length vdefj in assert (Array.length lar = lt); try let cv = conv_forall2_i (fun i e def ar -> let c = conv_leq e def (lift lt ar) in if c = NotConvertible then raise (IllBranch i) else c) env (Array.map (fun j -> j.uj_type) vdefj) (Array.map body_of_type lar) in begin match cv with | Convertible g -> g | NotConvertible -> assert false end with IllBranch i -> error_ill_typed_rec_body CCI env i lna vdefj lar