(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* if not poly then (* Old-style polymorphism *) make_polymorphic_if_constant_for_ind env j else RegularArity (Vars.subst_univs_level_constr subst j.uj_type) | `Some t -> let tj = infer_type env t in let _ = judge_of_cast env j DEFAULTcast tj in assert (eq_constr t tj.utj_val); RegularArity (Vars.subst_univs_level_constr subst t) | `SomeWJ (t, tj) -> let tj = infer_type env t in let _ = judge_of_cast env j DEFAULTcast tj in assert (eq_constr t tj.utj_val); RegularArity (Vars.subst_univs_level_constr subst t) let map_option_typ = function None -> `None | Some x -> `Some x (* Insertion of constants and parameters in environment. *) let mk_pure_proof c = (c, Univ.ContextSet.empty), Declareops.no_seff let handle_side_effects env body ctx side_eff = let handle_sideff (t,ctx) se = let cbl = match se with | SEsubproof (c,cb,b) -> [c,cb,b] | SEscheme (cl,_) -> List.map (fun (_,c,cb,b) -> c,cb,b) cl in let not_exists (c,_,_) = try ignore(Environ.lookup_constant c env); false with Not_found -> true in let cbl = List.filter not_exists cbl in let cname c = let name = string_of_con c in for i = 0 to String.length name - 1 do if name.[i] == '.' || name.[i] == '#' then name.[i] <- '_' done; Name (id_of_string name) in let rec sub c i x = match kind_of_term x with | Const (c', _) when eq_constant c c' -> mkRel i | _ -> map_constr_with_binders ((+) 1) (fun i x -> sub c i x) i x in let rec sub_body c u b i x = match kind_of_term x with | Const (c',u') when eq_constant c c' -> Vars.subst_instance_constr u' b | _ -> map_constr_with_binders ((+) 1) (fun i x -> sub_body c u b i x) i x in let fix_body (c,cb,b) (t,ctx) = match cb.const_body, b with | Def b, _ -> let b = Mod_subst.force_constr b in let poly = cb.const_polymorphic in if not poly then let b_ty = Typeops.type_of_constant_type env cb.const_type in let t = sub c 1 (Vars.lift 1 t) in mkLetIn (cname c, b, b_ty, t), Univ.ContextSet.union ctx (Univ.ContextSet.of_context cb.const_universes) else let univs = cb.const_universes in sub_body c (Univ.UContext.instance univs) b 1 (Vars.lift 1 t), ctx | OpaqueDef _, `Opaque (b,_) -> let poly = cb.const_polymorphic in if not poly then let b_ty = Typeops.type_of_constant_type env cb.const_type in let t = sub c 1 (Vars.lift 1 t) in mkApp (mkLambda (cname c, b_ty, t), [|b|]), Univ.ContextSet.union ctx (Univ.ContextSet.of_context cb.const_universes) else let univs = cb.const_universes in sub_body c (Univ.UContext.instance univs) b 1 (Vars.lift 1 t), ctx | _ -> assert false in List.fold_right fix_body cbl (t,ctx) in (* CAVEAT: we assure a proper order *) Declareops.fold_side_effects handle_sideff (body,ctx) (Declareops.uniquize_side_effects side_eff) let hcons_j j = { uj_val = hcons_constr j.uj_val; uj_type = hcons_constr j.uj_type} let feedback_completion_typecheck = Option.iter (fun state_id -> Pp.feedback ~state_id Feedback.Complete) let infer_declaration env kn dcl = match dcl with | ParameterEntry (ctx,poly,(t,uctx),nl) -> let env = push_context ~strict:(not poly) uctx env in let j = infer env t in let abstract = poly && not (Option.is_empty kn) in let usubst, univs = Univ.abstract_universes abstract uctx in let c = Typeops.assumption_of_judgment env j in let t = hcons_constr (Vars.subst_univs_level_constr usubst c) in Undef nl, RegularArity t, None, poly, univs, false, ctx | DefinitionEntry ({ const_entry_type = Some typ; const_entry_opaque = true; const_entry_polymorphic = false} as c) -> let env = push_context ~strict:true c.const_entry_universes env in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let tyj = infer_type env typ in let proofterm = Future.chain ~greedy:true ~pure:true body (fun ((body, ctx),side_eff) -> let body,ctx = handle_side_effects env body ctx side_eff in let env' = push_context_set ctx env in let j = infer env' body in let j = hcons_j j in let subst = Univ.LMap.empty in let _typ = constrain_type env' j c.const_entry_polymorphic subst (`SomeWJ (typ,tyj)) in feedback_completion_typecheck feedback_id; j.uj_val, ctx) in let def = OpaqueDef (Opaqueproof.create proofterm) in def, RegularArity typ, None, c.const_entry_polymorphic, c.const_entry_universes, c.const_entry_inline_code, c.const_entry_secctx | DefinitionEntry c -> let { const_entry_type = typ; const_entry_opaque = opaque } = c in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let (body, ctx), side_eff = Future.join body in let univsctx = Univ.ContextSet.of_context c.const_entry_universes in let body, ctx = handle_side_effects env body (Univ.ContextSet.union univsctx ctx) side_eff in let env = push_context_set ~strict:(not c.const_entry_polymorphic) ctx env in let abstract = c.const_entry_polymorphic && not (Option.is_empty kn) in let usubst, univs = Univ.abstract_universes abstract (Univ.ContextSet.to_context ctx) in let j = infer env body in let typ = constrain_type env j c.const_entry_polymorphic usubst (map_option_typ typ) in let def = hcons_constr (Vars.subst_univs_level_constr usubst j.uj_val) in let def = if opaque then OpaqueDef (Opaqueproof.create (Future.from_val (def, Univ.ContextSet.empty))) else Def (Mod_subst.from_val def) in feedback_completion_typecheck feedback_id; def, typ, None, c.const_entry_polymorphic, univs, c.const_entry_inline_code, c.const_entry_secctx | ProjectionEntry {proj_entry_ind = ind; proj_entry_arg = i} -> let mib, _ = Inductive.lookup_mind_specif env (ind,0) in let kn, pb = match mib.mind_record with | Some (Some (id, kns, pbs)) -> if i < Array.length pbs then kns.(i), pbs.(i) else assert false | _ -> assert false in let term, typ = pb.proj_eta in Def (Mod_subst.from_val (hcons_constr term)), RegularArity typ, Some pb, mib.mind_polymorphic, mib.mind_universes, false, None let global_vars_set_constant_type env = function | RegularArity t -> global_vars_set env t | TemplateArity (ctx,_) -> Context.fold_rel_context (fold_rel_declaration (fun t c -> Id.Set.union (global_vars_set env t) c)) ctx ~init:Id.Set.empty let record_aux env s_ty s_bo suggested_expr = let in_ty = keep_hyps env s_ty in let v = String.concat " " (CList.map_filter (fun (id, _,_) -> if List.exists (fun (id',_,_) -> Id.equal id id') in_ty then None else Some (Id.to_string id)) (keep_hyps env s_bo)) in Aux_file.record_in_aux "context_used" (v ^ ";" ^ suggested_expr) let suggest_proof_using = ref (fun _ _ _ _ _ -> "") let set_suggest_proof_using f = suggest_proof_using := f let build_constant_declaration kn env (def,typ,proj,poly,univs,inline_code,ctx) = let check declared inferred = let mk_set l = List.fold_right Id.Set.add (List.map pi1 l) Id.Set.empty in let inferred_set, declared_set = mk_set inferred, mk_set declared in if not (Id.Set.subset inferred_set declared_set) then let l = Id.Set.elements (Idset.diff inferred_set declared_set) in let n = List.length l in errorlabstrm "" (Pp.(str "The following section " ++ str (String.plural n "variable") ++ str " " ++ str (String.conjugate_verb_to_be n) ++ str " used but not declared:" ++ fnl () ++ pr_sequence Id.print (List.rev l) ++ str ".")) in let sort evn l = List.filter (fun (id,_,_) -> List.exists (fun (id',_,_) -> Names.Id.equal id id') l) (named_context env) in (* We try to postpone the computation of used section variables *) let hyps, def = let context_ids = List.map pi1 (named_context env) in match ctx with | None when not (List.is_empty context_ids) -> (* No declared section vars, and non-empty section context: we must look at the body NOW, if any *) let ids_typ = global_vars_set_constant_type env typ in let ids_def = match def with | Undef _ -> Idset.empty | Def cs -> global_vars_set env (Mod_subst.force_constr cs) | OpaqueDef lc -> let vars = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in (* we force so that cst are added to the env immediately after *) ignore(Opaqueproof.force_constraints (opaque_tables env) lc); let expr = !suggest_proof_using (Constant.to_string kn) env vars ids_typ context_ids in if !Flags.compilation_mode = Flags.BuildVo then record_aux env ids_typ vars expr; vars in keep_hyps env (Idset.union ids_typ ids_def), def | None -> if !Flags.compilation_mode = Flags.BuildVo then record_aux env Id.Set.empty Id.Set.empty ""; [], def (* Empty section context: no need to check *) | Some declared -> (* We use the declared set and chain a check of correctness *) sort env declared, match def with | Undef _ as x -> x (* nothing to check *) | Def cs as x -> let ids_typ = global_vars_set_constant_type env typ in let ids_def = global_vars_set env (Mod_subst.force_constr cs) in let inferred = keep_hyps env (Idset.union ids_typ ids_def) in check declared inferred; x | OpaqueDef lc -> (* In this case we can postpone the check *) OpaqueDef (Opaqueproof.iter_direct_opaque (fun c -> let ids_typ = global_vars_set_constant_type env typ in let ids_def = global_vars_set env c in let inferred = keep_hyps env (Idset.union ids_typ ids_def) in check declared inferred) lc) in let tps = (* FIXME: incompleteness of the bytecode vm: we compile polymorphic constants like opaque definitions. *) if poly then Some (Cemitcodes.from_val Cemitcodes.BCconstant) else let res = match proj with | None -> compile_constant_body env def | Some pb -> (* The compilation of primitive projections is a bit tricky, because they refer to themselves (the body of p looks like fun c => Proj(p,c)). We break the cycle by building an ad-hoc compilation environment. A cleaner solution would be that kernel projections are simply Proj(i,c) with i an int and c a constr, but we would have to get rid of the compatibility layer. *) let cb = { const_hyps = hyps; const_body = def; const_type = typ; const_proj = proj; const_body_code = None; const_polymorphic = poly; const_universes = univs; const_inline_code = inline_code } in let env = add_constant kn cb env in compile_constant_body env def in Option.map Cemitcodes.from_val res in { const_hyps = hyps; const_body = def; const_type = typ; const_proj = proj; const_body_code = tps; const_polymorphic = poly; const_universes = univs; const_inline_code = inline_code } (*s Global and local constant declaration. *) let translate_constant env kn ce = build_constant_declaration kn env (infer_declaration env (Some kn) ce) let translate_local_assum env t = let j = infer env t in let t = Typeops.assumption_of_judgment env j in t let translate_recipe env kn r = build_constant_declaration kn env (Cooking.cook_constant env r) let translate_local_def env id centry = let def,typ,proj,poly,univs,inline_code,ctx = infer_declaration env None (DefinitionEntry centry) in let typ = type_of_constant_type env typ in if ctx = None && !Flags.compilation_mode = Flags.BuildVo then begin match def with | Undef _ -> () | Def _ -> () | OpaqueDef lc -> let context_ids = List.map pi1 (named_context env) in let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in let expr = !suggest_proof_using (Id.to_string id) env ids_def ids_typ context_ids in record_aux env ids_typ ids_def expr end; def, typ, univs (* Insertion of inductive types. *) let translate_mind env kn mie = Indtypes.check_inductive env kn mie let handle_entry_side_effects env ce = { ce with const_entry_body = Future.chain ~greedy:true ~pure:true ce.const_entry_body (fun ((body, ctx), side_eff) -> let body, ctx' = handle_side_effects env body ctx side_eff in (body, ctx'), Declareops.no_seff); } let handle_side_effects env body side_eff = fst (handle_side_effects env body Univ.ContextSet.empty side_eff)