(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Names.Constant.equal c1 c2 | { eff = SEscheme (cl1,_) }, { eff = SEscheme (cl2,_) } -> CList.for_all2eq (fun (_,c1,_,_) (_,c2,_,_) -> Names.Constant.equal c1 c2) cl1 cl2 | _ -> false module SideEffects : sig type t val repr : t -> side_effect list val empty : t val add : side_effect -> t -> t val concat : t -> t -> t end = struct let compare_seff e1 e2 = match e1, e2 with | SEsubproof (c1, _, _), SEsubproof (c2, _, _) -> Constant.CanOrd.compare c1 c2 | SEscheme (cl1, _), SEscheme (cl2, _) -> let cmp (_, c1, _, _) (_, c2, _, _) = Constant.CanOrd.compare c1 c2 in CList.compare cmp cl1 cl2 | SEsubproof _, SEscheme _ -> -1 | SEscheme _, SEsubproof _ -> 1 module SeffOrd = struct type t = side_effect let compare e1 e2 = compare_seff e1.eff e2.eff end module SeffSet = Set.Make(SeffOrd) type t = { seff : side_effect list; elts : SeffSet.t } (** Invariant: [seff] is a permutation of the elements of [elts] *) let repr eff = eff.seff let empty = { seff = []; elts = SeffSet.empty } let add x es = if SeffSet.mem x es.elts then es else { seff = x :: es.seff; elts = SeffSet.add x es.elts } let concat xes yes = List.fold_right add xes.seff yes end type side_effects = SideEffects.t type _ trust = | Pure : unit trust | SideEffects : structure_body -> side_effects trust let uniq_seff_rev = SideEffects.repr let uniq_seff l = List.rev (SideEffects.repr l) let empty_seff = SideEffects.empty let add_seff = SideEffects.add let concat_seff = SideEffects.concat let mk_pure_proof c = (c, Univ.ContextSet.empty), empty_seff let inline_side_effects env body ctx side_eff = (** First step: remove the constants that are still in the environment *) let filter { eff = se; from_env = mb } = let cbl = match se with | SEsubproof (c, cb, b) -> [c, cb, b] | SEscheme (cl,_) -> List.map (fun (_, c, cb, b) -> c, cb, b) cl in let not_exists (c,_,_) = try ignore(Environ.lookup_constant c env); false with Not_found -> true in let cbl = List.filter not_exists cbl in (cbl, mb) in (* CAVEAT: we assure that most recent effects come first *) let side_eff = List.map filter (uniq_seff_rev side_eff) in let sigs = List.rev_map (fun (cbl, mb) -> mb, List.length cbl) side_eff in let side_eff = List.fold_left (fun accu (cbl, _) -> cbl @ accu) [] side_eff in let side_eff = List.rev side_eff in (** Most recent side-effects first in side_eff *) if List.is_empty side_eff then (body, ctx, sigs) else (** Second step: compute the lifts and substitutions to apply *) let cname c = let name = Constant.to_string c in let map c = if c == '.' || c == '#' then '_' else c in let name = String.map map name in Name (Id.of_string name) in let fold (subst, var, ctx, args) (c, cb, b) = let (b, opaque) = match cb.const_body, b with | Def b, _ -> (Mod_subst.force_constr b, false) | OpaqueDef _, `Opaque (b,_) -> (b, true) | _ -> assert false in match cb.const_universes with | Monomorphic_const univs -> (** Abstract over the term at the top of the proof *) let ty = cb.const_type in let subst = Cmap_env.add c (Inr var) subst in let ctx = Univ.ContextSet.union ctx univs in (subst, var + 1, ctx, (cname c, b, ty, opaque) :: args) | Polymorphic_const auctx -> (** Inline the term to emulate universe polymorphism *) let subst = Cmap_env.add c (Inl b) subst in (subst, var, ctx, args) in let (subst, len, ctx, args) = List.fold_left fold (Cmap_env.empty, 1, ctx, []) side_eff in (** Third step: inline the definitions *) let rec subst_const i k t = match Constr.kind t with | Const (c, u) -> let data = try Some (Cmap_env.find c subst) with Not_found -> None in begin match data with | None -> t | Some (Inl b) -> (** [b] is closed but may refer to other constants *) subst_const i k (Vars.subst_instance_constr u b) | Some (Inr n) -> mkRel (k + n - i) end | Rel n -> (** Lift free rel variables *) if n <= k then t else mkRel (n + len - i - 1) | _ -> Constr.map_with_binders ((+) 1) (fun k t -> subst_const i k t) k t in let map_args i (na, b, ty, opaque) = (** Both the type and the body may mention other constants *) let ty = subst_const (len - i - 1) 0 ty in let b = subst_const (len - i - 1) 0 b in (na, b, ty, opaque) in let args = List.mapi map_args args in let body = subst_const 0 0 body in let fold_arg (na, b, ty, opaque) accu = if opaque then mkApp (mkLambda (na, ty, accu), [|b|]) else mkLetIn (na, b, ty, accu) in let body = List.fold_right fold_arg args body in (body, ctx, sigs) let rec is_nth_suffix n l suf = if Int.equal n 0 then l == suf else match l with | [] -> false | _ :: l -> is_nth_suffix (pred n) l suf (* Given the list of signatures of side effects, checks if they match. * I.e. if they are ordered descendants of the current revstruct. Returns the number of effects that can be trusted. *) let check_signatures curmb sl = let is_direct_ancestor accu (mb, how_many) = match accu with | None -> None | Some (n, curmb) -> try let mb = CEphemeron.get mb in if is_nth_suffix how_many mb curmb then Some (n + how_many, mb) else None with CEphemeron.InvalidKey -> None in let sl = List.fold_left is_direct_ancestor (Some (0, curmb)) sl in match sl with | None -> 0 | Some (n, _) -> n let skip_trusted_seff sl b e = let rec aux sl b e acc = let open Context.Rel.Declaration in if Int.equal sl 0 then b, e, acc else match kind b with | LetIn (n,c,ty,bo) -> aux (sl - 1) bo (Environ.push_rel (LocalDef (n,c,ty)) e) (`Let(n,c,ty)::acc) | App(hd,arg) -> begin match kind hd with | Lambda (n,ty,bo) -> aux (sl - 1) bo (Environ.push_rel (LocalAssum (n,ty)) e) (`Cut(n,ty,arg)::acc) | _ -> assert false end | _ -> assert false in aux sl b e [] let rec unzip ctx j = match ctx with | [] -> j | `Let (n,c,ty) :: ctx -> unzip ctx { j with uj_val = mkLetIn (n,c,ty,j.uj_val) } | `Cut (n,ty,arg) :: ctx -> unzip ctx { j with uj_val = mkApp (mkLambda (n,ty,j.uj_val),arg) } let feedback_completion_typecheck = Option.iter (fun state_id -> Feedback.feedback ~id:state_id Feedback.Complete) let abstract_constant_universes = function | Monomorphic_const_entry uctx -> Univ.empty_level_subst, Monomorphic_const uctx | Polymorphic_const_entry uctx -> let sbst, auctx = Univ.abstract_universes uctx in let sbst = Univ.make_instance_subst sbst in sbst, Polymorphic_const auctx let infer_declaration (type a) ~(trust : a trust) env (dcl : a constant_entry) = match dcl with | ParameterEntry (ctx,(t,uctx),nl) -> let env = match uctx with | Monomorphic_const_entry uctx -> push_context_set ~strict:true uctx env | Polymorphic_const_entry uctx -> push_context ~strict:false uctx env in let j = infer env t in let usubst, univs = abstract_constant_universes uctx in let c = Typeops.assumption_of_judgment env j in let t = Constr.hcons (Vars.subst_univs_level_constr usubst c) in { Cooking.cook_body = Undef nl; cook_type = t; cook_universes = univs; cook_inline = false; cook_context = ctx; } (** Definition [c] is opaque (Qed), non polymorphic and with a specified type, so we delay the typing and hash consing of its body. Remark: when the universe quantification is given explicitly, we could delay even in the polymorphic case. *) | DefinitionEntry ({ const_entry_type = Some typ; const_entry_opaque = true; const_entry_universes = Monomorphic_const_entry univs } as c) -> let env = push_context_set ~strict:true univs env in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let tyj = infer_type env typ in let proofterm = Future.chain body (fun ((body,uctx),side_eff) -> let j, uctx = match trust with | Pure -> let env = push_context_set uctx env in let j = infer env body in let _ = judge_of_cast env j DEFAULTcast tyj in j, uctx | SideEffects mb -> let (body, uctx, signatures) = inline_side_effects env body uctx side_eff in let valid_signatures = check_signatures mb signatures in let env = push_context_set uctx env in let body,env,ectx = skip_trusted_seff valid_signatures body env in let j = infer env body in let j = unzip ectx j in let _ = judge_of_cast env j DEFAULTcast tyj in j, uctx in let c = Constr.hcons j.uj_val in feedback_completion_typecheck feedback_id; c, uctx) in let def = OpaqueDef (Opaqueproof.create proofterm) in { Cooking.cook_body = def; cook_type = typ; cook_universes = Monomorphic_const univs; cook_inline = c.const_entry_inline_code; cook_context = c.const_entry_secctx; } (** Other definitions have to be processed immediately. *) | DefinitionEntry c -> let { const_entry_type = typ; const_entry_opaque = opaque } = c in let { const_entry_body = body; const_entry_feedback = feedback_id } = c in let (body, ctx), side_eff = Future.join body in let body, ctx, _ = match trust with | Pure -> body, ctx, [] | SideEffects _ -> inline_side_effects env body ctx side_eff in let env, usubst, univs = match c.const_entry_universes with | Monomorphic_const_entry univs -> let ctx = Univ.ContextSet.union univs ctx in let env = push_context_set ~strict:true ctx env in env, Univ.empty_level_subst, Monomorphic_const ctx | Polymorphic_const_entry uctx -> (** Ensure not to generate internal constraints in polymorphic mode. The only way for this to happen would be that either the body contained deferred universes, or that it contains monomorphic side-effects. The first property is ruled out by upper layers, and the second one is ensured by the fact we currently unconditionally export side-effects from polymorphic definitions, i.e. [trust] is always [Pure]. *) let () = assert (Univ.ContextSet.is_empty ctx) in let env = push_context ~strict:false uctx env in let sbst, auctx = Univ.abstract_universes uctx in let sbst = Univ.make_instance_subst sbst in env, sbst, Polymorphic_const auctx in let j = infer env body in let typ = match typ with | None -> Vars.subst_univs_level_constr usubst j.uj_type | Some t -> let tj = infer_type env t in let _ = judge_of_cast env j DEFAULTcast tj in Vars.subst_univs_level_constr usubst t in let def = Constr.hcons (Vars.subst_univs_level_constr usubst j.uj_val) in let def = if opaque then OpaqueDef (Opaqueproof.create (Future.from_val (def, Univ.ContextSet.empty))) else Def (Mod_subst.from_val def) in feedback_completion_typecheck feedback_id; { Cooking.cook_body = def; cook_type = typ; cook_universes = univs; cook_inline = c.const_entry_inline_code; cook_context = c.const_entry_secctx; } let record_aux env s_ty s_bo = let in_ty = keep_hyps env s_ty in let v = String.concat " " (CList.map_filter (fun decl -> let id = NamedDecl.get_id decl in if List.exists (NamedDecl.get_id %> Id.equal id) in_ty then None else Some (Id.to_string id)) (keep_hyps env s_bo)) in Aux_file.record_in_aux "context_used" v let build_constant_declaration kn env result = let open Cooking in let typ = result.cook_type in let check declared inferred = let mk_set l = List.fold_right Id.Set.add (List.map NamedDecl.get_id l) Id.Set.empty in let inferred_set, declared_set = mk_set inferred, mk_set declared in if not (Id.Set.subset inferred_set declared_set) then let l = Id.Set.elements (Id.Set.diff inferred_set declared_set) in let n = List.length l in let declared_vars = Pp.pr_sequence Id.print (Id.Set.elements declared_set) in let inferred_vars = Pp.pr_sequence Id.print (Id.Set.elements inferred_set) in let missing_vars = Pp.pr_sequence Id.print (List.rev l) in user_err Pp.(prlist str ["The following section "; (String.plural n "variable"); " "; (String.conjugate_verb_to_be n); " used but not declared:"] ++ fnl () ++ missing_vars ++ str "." ++ fnl () ++ fnl () ++ str "You can either update your proof to not depend on " ++ missing_vars ++ str ", or you can update your Proof line from" ++ fnl () ++ str "Proof using " ++ declared_vars ++ fnl () ++ str "to" ++ fnl () ++ str "Proof using " ++ inferred_vars) in let sort l = List.filter (fun decl -> let id = NamedDecl.get_id decl in List.exists (NamedDecl.get_id %> Names.Id.equal id) l) (named_context env) in (* We try to postpone the computation of used section variables *) let hyps, def = let context_ids = List.map NamedDecl.get_id (named_context env) in let def = result.cook_body in match result.cook_context with | None when not (List.is_empty context_ids) -> (* No declared section vars, and non-empty section context: we must look at the body NOW, if any *) let ids_typ = global_vars_set env typ in let ids_def = match def with | Undef _ -> Id.Set.empty | Def cs -> global_vars_set env (Mod_subst.force_constr cs) | OpaqueDef lc -> let vars = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in (* we force so that cst are added to the env immediately after *) ignore(Opaqueproof.force_constraints (opaque_tables env) lc); if !Flags.record_aux_file then record_aux env ids_typ vars; vars in keep_hyps env (Id.Set.union ids_typ ids_def), def | None -> if !Flags.record_aux_file then record_aux env Id.Set.empty Id.Set.empty; [], def (* Empty section context: no need to check *) | Some declared -> (* We use the declared set and chain a check of correctness *) sort declared, match def with | Undef _ as x -> x (* nothing to check *) | Def cs as x -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env (Mod_subst.force_constr cs) in let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in check declared inferred; x | OpaqueDef lc -> (* In this case we can postpone the check *) OpaqueDef (Opaqueproof.iter_direct_opaque (fun c -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env c in let inferred = keep_hyps env (Id.Set.union ids_typ ids_def) in check declared inferred) lc) in let univs = result.cook_universes in let tps = let res = Cbytegen.compile_constant_body ~fail_on_error:false env univs def in Option.map Cemitcodes.from_val res in { const_hyps = hyps; const_body = def; const_type = typ; const_body_code = tps; const_universes = univs; const_inline_code = result.cook_inline; const_typing_flags = Environ.typing_flags env } (*s Global and local constant declaration. *) let translate_constant mb env kn ce = build_constant_declaration kn env (infer_declaration ~trust:mb env ce) let constant_entry_of_side_effect cb u = let univs = match cb.const_universes with | Monomorphic_const uctx -> Monomorphic_const_entry uctx | Polymorphic_const auctx -> Polymorphic_const_entry (Univ.AUContext.repr auctx) in let pt = match cb.const_body, u with | OpaqueDef _, `Opaque (b, c) -> b, c | Def b, `Nothing -> Mod_subst.force_constr b, Univ.ContextSet.empty | _ -> assert false in DefinitionEntry { const_entry_body = Future.from_val (pt, ()); const_entry_secctx = None; const_entry_feedback = None; const_entry_type = Some cb.const_type; const_entry_universes = univs; const_entry_opaque = Declareops.is_opaque cb; const_entry_inline_code = cb.const_inline_code } ;; let turn_direct (kn,cb,u,r as orig) = match cb.const_body, u with | OpaqueDef _, `Opaque (b,c) -> let pt = Future.from_val (b,c) in kn, { cb with const_body = OpaqueDef (Opaqueproof.create pt) }, u, r | _ -> orig ;; type side_effect_role = | Subproof | Schema of inductive * string type exported_side_effect = Constant.t * constant_body * side_effect_role let export_side_effects mb env c = let { const_entry_body = body } = c in let _, eff = Future.force body in let ce = { c with const_entry_body = Future.chain body (fun (b_ctx, _) -> b_ctx, ()) } in let not_exists (c,_,_,_) = try ignore(Environ.lookup_constant c env); false with Not_found -> true in let aux (acc,sl) { eff = se; from_env = mb } = let cbl = match se with | SEsubproof (c,cb,b) -> [c,cb,b,Subproof] | SEscheme (cl,k) -> List.map (fun (i,c,cb,b) -> c,cb,b,Schema(i,k)) cl in let cbl = List.filter not_exists cbl in if cbl = [] then acc, sl else cbl :: acc, (mb,List.length cbl) :: sl in let seff, signatures = List.fold_left aux ([],[]) (uniq_seff_rev eff) in let trusted = check_signatures mb signatures in let push_seff env = function | kn, cb, `Nothing, _ -> begin let env = Environ.add_constant kn cb env in match cb.const_universes with | Monomorphic_const ctx -> Environ.push_context_set ~strict:true ctx env | Polymorphic_const _ -> env end | kn, cb, `Opaque(_, ctx), _ -> begin let env = Environ.add_constant kn cb env in match cb.const_universes with | Monomorphic_const cstctx -> let env = Environ.push_context_set ~strict:true cstctx env in Environ.push_context_set ~strict:true ctx env | Polymorphic_const _ -> env end in let rec translate_seff sl seff acc env = match seff with | [] -> List.rev acc, ce | cbs :: rest -> if Int.equal sl 0 then let env, cbs = List.fold_left (fun (env,cbs) (kn, ocb, u, r) -> let ce = constant_entry_of_side_effect ocb u in let cb = translate_constant Pure env kn ce in (push_seff env (kn, cb,`Nothing, Subproof),(kn,cb,r) :: cbs)) (env,[]) cbs in translate_seff 0 rest (cbs @ acc) env else let cbs_len = List.length cbs in let cbs = List.map turn_direct cbs in let env = List.fold_left push_seff env cbs in let ecbs = List.map (fun (kn,cb,u,r) -> kn, cb, r) cbs in translate_seff (sl - cbs_len) rest (ecbs @ acc) env in translate_seff trusted seff [] env ;; let translate_local_assum env t = let j = infer env t in let t = Typeops.assumption_of_judgment env j in t let translate_recipe env kn r = (** We only hashcons the term when outside of a section, otherwise this would be useless. It is detected by the dirpath of the constant being empty. *) let (_, dir, _) = Constant.repr3 kn in let hcons = DirPath.is_empty dir in build_constant_declaration kn env (Cooking.cook_constant ~hcons r) let translate_local_def env id centry = let open Cooking in let body = Future.from_val ((centry.secdef_body, Univ.ContextSet.empty), ()) in let centry = { const_entry_body = body; const_entry_secctx = centry.secdef_secctx; const_entry_feedback = centry.secdef_feedback; const_entry_type = centry.secdef_type; const_entry_universes = Monomorphic_const_entry Univ.ContextSet.empty; const_entry_opaque = false; const_entry_inline_code = false; } in let decl = infer_declaration ~trust:Pure env (DefinitionEntry centry) in let typ = decl.cook_type in if Option.is_empty decl.cook_context && !Flags.record_aux_file then begin match decl.cook_body with | Undef _ -> () | Def _ -> () | OpaqueDef lc -> let ids_typ = global_vars_set env typ in let ids_def = global_vars_set env (Opaqueproof.force_proof (opaque_tables env) lc) in record_aux env ids_typ ids_def end; let () = match decl.cook_universes with | Monomorphic_const ctx -> assert (Univ.ContextSet.is_empty ctx) | Polymorphic_const _ -> assert false in let c = match decl.cook_body with | Def c -> Mod_subst.force_constr c | OpaqueDef o -> let p = Opaqueproof.force_proof (Environ.opaque_tables env) o in let cst = Opaqueproof.force_constraints (Environ.opaque_tables env) o in (** Let definitions are ensured to have no extra constraints coming from the body by virtue of the typing of [Entries.section_def_entry]. *) let () = assert (Univ.ContextSet.is_empty cst) in p | Undef _ -> assert false in c, typ (* Insertion of inductive types. *) let translate_mind env kn mie = Indtypes.check_inductive env kn mie let inline_entry_side_effects env ce = { ce with const_entry_body = Future.chain ce.const_entry_body (fun ((body, ctx), side_eff) -> let body, ctx',_ = inline_side_effects env body ctx side_eff in (body, ctx'), ()); } let inline_side_effects env body side_eff = pi1 (inline_side_effects env body Univ.ContextSet.empty side_eff)