(* $Id$ *) (*i*) open Pp open Names open Generic (*i*) (*s The operators of the Calculus of Inductive Constructions. ['a] is the type of sorts. ([XTRA] is an extra slot, for putting in whatever sort of operator we need for whatever sort of application.) *) type existential_key = int type pattern_source = DefaultPat of int | RegularPat type case_style = PrintLet | PrintIf | PrintCases type case_printing = inductive_path * identifier array * int * case_style option * pattern_source array (* the integer is the number of real args, needed for reduction *) type case_info = int array * case_printing type 'a oper = | Meta of int | Sort of 'a | Cast | Prod | Lambda | AppL | Const of section_path | Abst of section_path | Evar of existential_key | MutInd of inductive_path | MutConstruct of constructor_path | MutCase of case_info | Fix of int array * int | CoFix of int | XTRA of string (*s The sorts of CCI. *) type contents = Pos | Null val str_of_contents : contents -> string val contents_of_str : string -> contents type sorts = | Prop of contents (* Prop and Set *) | Type of Univ.universe (* Type *) val mk_Set : sorts val mk_Prop : sorts val print_sort : sorts -> std_ppcmds (*s The type [constr] of the terms of CCI is obtained by instanciating the generic terms (type [term], see \refsec{generic_terms}) on the above operators, themselves instanciated on the above sorts. *) type constr = sorts oper term type 'a judge = { body : constr; typ : 'a } type typed_type type typed_term = typed_type judge val make_typed : constr -> sorts -> typed_type val typed_app : (constr -> constr) -> typed_type -> typed_type val typed_combine : (constr -> constr -> constr) -> (sorts -> sorts -> sorts) -> (typed_type -> typed_type -> typed_type) val body_of_type : typed_type -> constr val level_of_type : typed_type -> sorts val incast_type : typed_type -> constr val outcast_type : constr -> typed_type (**********************************************************************) type binder_kind = BProd | BLambda type fix_kind = RFix of (int array * int) | RCofix of int type 'ctxt reference = | RConst of section_path * 'ctxt | RInd of inductive_path * 'ctxt | RConstruct of constructor_path * 'ctxt | RAbst of section_path | RVar of identifier | REVar of int * 'ctxt (*s Functions for dealing with constr terms. The following functions are intended to simplify and to uniform the manipulation of terms. Some of these functions may be overlapped with previous ones. *) (* Concrete type for making pattern-matching. *) type existential = int * constr array type constant = section_path * constr array type constructor = constructor_path * constr array type inductive = inductive_path * constr array type fixpoint = (int array * int) * (constr array * name list * constr array) type cofixpoint = int * (constr array * name list * constr array) type kindOfTerm = | IsRel of int | IsMeta of int | IsVar of identifier | IsXtra of string | IsSort of sorts | IsCast of constr * constr | IsProd of name * constr * constr | IsLambda of name * constr * constr | IsAppL of constr * constr list | IsAbst of section_path * constr array | IsEvar of existential | IsConst of constant | IsMutInd of inductive | IsMutConstruct of constructor | IsMutCase of case_info * constr * constr * constr array | IsFix of fixpoint | IsCoFix of cofixpoint (* Discriminates which kind of term is it. Note that there is no cases for [DLAM] and [DLAMV]. These terms do not make sense alone, but they must be preceeded by the application of an operator. *) val kind_of_term : constr -> kindOfTerm (*s Term constructors. *) (* Constructs a DeBrujin index *) val mkRel : int -> constr (* Constructs an existential variable named "?" *) val mkExistential : constr (* Constructs an existential variable named "?n" *) val mkMeta : int -> constr (* Constructs a Variable *) val mkVar : identifier -> constr (* Construct an [XTRA] term. *) val mkXtra : string -> constr (* Construct a type *) val mkSort : sorts -> constr val mkProp : constr val mkSet : constr val mkType : Univ.universe -> constr val prop : sorts val spec : sorts val types : sorts val type_0 : sorts val type_1 : sorts (* Construct an implicit (see implicit arguments in the RefMan). Used for extraction *) val mkImplicit : constr val implicit_sort : sorts (* Constructs the term $t_1::t2$, i.e. the term $t_1$ casted with the type $t_2$ (that means t2 is declared as the type of t1). *) val mkCast : constr -> constr -> constr (* Constructs the product $(x:t_1)t_2$. $x$ may be anonymous. *) val mkProd : name -> constr -> constr -> constr (* [mkProd_string s t c] constructs the product $(s:t)c$ *) val mkProd_string : string -> constr -> constr -> constr (* non-dependant product $t_1 \rightarrow t_2$ *) val mkArrow : constr -> constr -> constr (* named product *) val mkNamedProd : identifier -> constr -> constr -> constr (* Constructs the abstraction $[x:t_1]t_2$ *) val mkLambda : name -> constr -> constr -> constr val mkNamedLambda : identifier -> constr -> constr -> constr (* [mkLambda_string s t c] constructs $[s:t]c$ *) val mkLambda_string : string -> constr -> constr -> constr (* If $a = [| t_1; \dots; t_n |]$, constructs the application $(t_1~\dots~t_n)$. *) val mkAppL : constr array -> constr val mkAppList : constr -> constr list -> constr (* Constructs a constant *) (* The array of terms correspond to the variables introduced in the section *) val mkConst : constant -> constr (* Constructs an existential variable *) val mkEvar : int -> constr array -> constr (* Constructs an abstract object *) val mkAbst : section_path -> constr array -> constr (* Constructs the ith (co)inductive type of the block named sp *) (* The array of terms correspond to the variables introduced in the section *) val mkMutInd : inductive -> constr (* Constructs the jth constructor of the ith (co)inductive type of the block named sp. The array of terms correspond to the variables introduced in the section *) val mkMutConstruct : constructor -> constr (* Constructs the term

Case c of c1 | c2 .. | cn end *) val mkMutCase : case_info -> constr -> constr -> constr list -> constr val mkMutCaseA : case_info -> constr -> constr -> constr array -> constr (* If [recindxs = [|i1,...in|]] [typarray = [|t1,...tn|]] [funnames = [f1,.....fn]] [bodies = [b1,.....bn]] then [ mkFix ((recindxs,i),typarray, funnames, bodies) ] constructs the $i$th function of the block [Fixpoint f1 [ctx1] = b1 with f2 [ctx2] = b2 ... with fn [ctxn] = bn.] \noindent where the lenght of the $j$th context is $ij$. *) val mkFix : fixpoint -> constr (* Similarly, but we assume the body already constructed *) val mkFixDlam : int array -> int -> constr array -> constr array -> constr (* If [typarray = [|t1,...tn|]] [funnames = [f1,.....fn]] [bodies = [b1,.....bn]] \par\noindent then [mkCoFix (i, (typsarray, funnames, bodies))] constructs the ith function of the block [CoFixpoint f1 = b1 with f2 = b2 ... with fn = bn.] *) val mkCoFix : cofixpoint -> constr (* Similarly, but we assume the body already constructed *) val mkCoFixDlam : int -> constr array -> constr array -> constr (*s Term destructors. Destructor operations are partial functions and raise [invalid_arg "dest*"] if the term has not the expected form. *) (* Destructs a DeBrujin index *) val destRel : constr -> int (* Destructs an existential variable *) val destMeta : constr -> int val isMETA : constr -> bool (* Destructs a variable *) val destVar : constr -> identifier (* Destructs an XTRA *) val destXtra : constr -> string (* Destructs a sort. [is_Prop] recognizes the sort \textsf{Prop}, whether [isprop] recognizes both \textsf{Prop} and \textsf{Set}. *) val destSort : constr -> sorts val contents_of_kind : constr -> contents val is_Prop : constr -> bool val is_Set : constr -> bool val isprop : constr -> bool val is_Type : constr -> bool val iskind : constr -> bool val is_existential_oper : sorts oper -> bool val isType : sorts -> bool val is_small : sorts -> bool (* true for \textsf{Prop} and \textsf{Set} *) (* Destructs a casted term *) val destCast : constr -> constr * constr val cast_type : constr -> constr (* 2nd proj *) val cast_term : constr -> constr (* 1st proj *) val isCast : constr -> bool (* Removes recursively the casts around a term i.e. [strip_outer_cast] (Cast (Cast ... (Cast c, t) ... ))] is [c]. *) val strip_outer_cast : constr -> constr (* Special function, which keep the key casts under Fix and MutCase. *) val strip_all_casts : constr -> constr (* Tests if a de Bruijn index *) val isRel : constr -> bool (* Tests if a variable *) val isVar : constr -> bool (* Destructs the product $(x:t_1)t_2$ *) val destProd : constr -> name * constr * constr val hd_of_prod : constr -> constr val hd_is_constructor : constr -> bool (* Destructs the abstraction $[x:t_1]t_2$ *) val destLambda : constr -> name * constr * constr (* Destructs an application *) val destAppL : constr -> constr array val isAppL : constr -> bool val hd_app : constr -> constr val args_app : constr -> constr array val destApplication : constr -> constr * constr array (* Destructs a constant *) val destConst : constr -> section_path * constr array val path_of_const : constr -> section_path val args_of_const : constr -> constr array (* Destructs an existential variable *) val destEvar : constr -> int * constr array val num_of_evar : constr -> int (* Destructs an abstract term *) val destAbst : constr -> section_path * constr array val path_of_abst : constr -> section_path val args_of_abst : constr -> constr array (* Destructs a (co)inductive type *) val destMutInd : constr -> inductive val op_of_mind : constr -> inductive_path val args_of_mind : constr -> constr array (* Destructs a constructor *) val destMutConstruct : constr -> constructor val op_of_mconstr : constr -> constructor_path val args_of_mconstr : constr -> constr array (* Destructs a term

Case c of lc1 | lc2 .. | lcn end *) val destCase : constr -> case_info * constr * constr * constr array (* Destructs the $i$th function of the block $\mathit{Fixpoint} ~ f_1 ~ [ctx_1] = b_1 \mathit{with} ~ f_2 ~ [ctx_2] = b_2 \dots \mathit{with} ~ f_n ~ [ctx_n] = b_n$, where the lenght of the $j$th context is $ij$. *) val destGralFix : constr array -> constr array * Names.name list * constr array val destFix : constr -> fixpoint val destCoFix : constr -> cofixpoint (* Provisoire, le temps de maitriser les cast *) val destUntypedFix : constr -> int array * int * constr array * Names.name list * constr array val destUntypedCoFix : constr -> int * constr array * Names.name list * constr array (*s Other term constructors. *) val abs_implicit : constr -> constr val lambda_implicit : constr -> constr val lambda_implicit_lift : int -> constr -> constr (* [applist (f,args)] and co build [mkAppL (f,args)] if [args] non empty and build [f] otherwise *) val applist : constr * constr list -> constr val applistc : constr -> constr list -> constr val appvect : constr * constr array -> constr val appvectc : constr -> constr array -> constr (* [prodn n l b] = $(x_1:T_1)..(x_n:T_n)b$ where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *) val prodn : int -> (name * constr) list -> constr -> constr (* [lamn n l b] = $[x_1:T_1]..[x_n:T_n]b$ where $l = [(x_n,T_n);\dots;(x_1,T_1);Gamma]$ *) val lamn : int -> (name * constr) list -> constr -> constr (* [prod_it b l] = $(x_1:T_1)..(x_n:T_n)b$ where $l = [(x_n,T_n);\dots;(x_1,T_1)]$ *) val prod_it : constr -> (name * constr) list -> constr (* [lam_it b l] = $[x_1:T_1]..[x_n:T_n]b$ where $l = [(x_n,T_n);\dots;(x_1,T_1)]$ *) val lam_it : constr -> (name * constr) list -> constr (* [to_lambda n l] = $[x_1:T_1]...[x_n:T_n](x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$ where $l = (x_1:T_1)...(x_n:T_n)(x_{n+1}:T_{n+1})...(x_{n+j}:T_{n+j})T$ *) val to_lambda : int -> constr -> constr val to_prod : int -> constr -> constr (* pseudo-reduction rule *) (* [prod_applist] $(x1:B1;...;xn:Bn)B a1...an \rightarrow B[a1...an]$ *) val prod_applist : constr -> constr list -> constr (*s Other term destructors. *) (* Transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a product. *) val decompose_prod : constr -> (name*constr) list * constr (* Transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$, where $T$ is not a lambda. *) val decompose_lam : constr -> (name*constr) list * constr (* Given a positive integer n, transforms a product term $(x_1:T_1)..(x_n:T_n)T$ into the pair $([(xn,Tn);...;(x1,T1)],T)$. *) val decompose_prod_n : int -> constr -> (name*constr) list * constr (* Given a positive integer $n$, transforms a lambda term $[x_1:T_1]..[x_n:T_n]T$ into the pair $([(x_n,T_n);...;(x_1,T_1)],T)$ *) val decompose_lam_n : int -> constr -> (name*constr) list * constr (* [nb_lam] $[x_1:T_1]...[x_n:T_n]c$ where $c$ is not an abstraction gives $n$ (casts are ignored) *) val nb_lam : constr -> int (* similar to [nb_lam], but gives the number of products instead *) val nb_prod : constr -> int (*s Various utility functions for implementing terms with bindings. *) val extract_lifted : int * constr -> constr val insert_lifted : constr -> int * constr (* If [l] is a list of pairs $(n:nat,x:constr)$, [env] is a stack of $(na:name,T:constr)$, then [push_and_lift (id,c) env l] adds a component [(id,c)] to [env] and lifts [l] one step *) val push_and_lift : name * constr -> (name * constr) list -> (int * constr) list -> (name * constr) list * (int * constr) list (* if [T] is not $(x_1:A_1)(x_2:A_2)....(x_n:A_n)T'$ then [(push_and_liftl n env T l)] raises an error else it gives $([x1,A1 ; x2,A2 ; ... ; xn,An]@env,T',l')$ where $l'$ is [l] lifted [n] steps *) val push_and_liftl : int -> (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* if $T$ is not $[x_1:A_1][x_2:A_2]....[x_n:A_n]T'$ then [(push_lam_and_liftl n env T l)] raises an error else it gives $([x_1,A_1; x_2,A_2; ...; x_n,A_n]@env,T',l')$ where $l'$ is [l] lifted [n] steps *) val push_lam_and_liftl : int -> (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* If [l] is a list of pairs $(n:nat,x:constr)$, [tlenv] is a stack of $(na:name,T:constr)$, [B] is a constr, [na] a name, then [(prod_and_pop ((na,T)::tlenv) B l)] gives $(tlenv, (na:T)B, l')$ where $l'$ is [l] lifted down one step *) val prod_and_pop : (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* recusively applies [prod_and_pop] : if [env] = $[na_1:T_1 ; na_2:T_2 ; ... ; na_n:T_n]@tlenv$ then [(prod_and_popl n env T l)] gives $(tlenv,(na_n:T_n)...(na_1:T_1)T,l')$ where $l'$ is [l] lifted down [n] steps *) val prod_and_popl : int -> (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* similar to [prod_and_pop], but gives $[na:T]B$ intead of $(na:T)B$ *) val lam_and_pop : (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* similar to [prod_and_popl] but gives $[na_n:T_n]...[na_1:T_1]B$ instead of $(na_n:T_n)...(na_1:T_1)B$ *) val lam_and_popl : int -> (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* similar to [lamn_and_pop] but generates new names whenever the name is [Anonymous] *) val lam_and_pop_named : (name * constr) list -> constr ->(int * constr) list ->identifier list -> (name * constr) list * constr * (int * constr) list * identifier list (* similar to [prod_and_popl] but gives $[na_n:T_n]...[na_1:T_1]B$ instead of but it generates names whenever $na_i$ = [Anonymous] *) val lam_and_popl_named : int -> (name * constr) list -> constr -> (int * constr) list -> (name * constr) list * constr * (int * constr) list (* [lambda_ize n T endpt] will pop off the first [n] products in [T], then stick in [endpt], properly lifted, and then push back the products, but as lambda- abstractions *) val lambda_ize : int ->'a oper term -> 'a oper term -> 'a oper term (*s Flattening and unflattening of embedded applications and casts. *) (* if [c] is not an [AppL], it is transformed into [mkAppL [| c |]] *) val ensure_appl : constr -> constr (* unflattens application lists *) val telescope_appl : constr -> constr (* flattens application lists *) val collapse_appl : constr -> constr val decomp_app : constr -> constr * constr list (*s Misc functions on terms, sorts and conversion problems. *) (* Level comparison for information extraction : Prop <= Type *) val same_kind : constr -> constr -> bool val le_kind : constr -> constr -> bool val le_kind_implicit : constr -> constr -> bool val sort_hdchar : sorts -> string (*s Occur check functions. *) val occur_meta : constr -> bool (*i Returns the maximum of metas. Returns -1 if there is no meta i*) (*i val max_occur_meta : constr -> int i*) val occur_existential : constr -> bool val rel_vect : int -> int -> constr array (* [(occur_const (s:section_path) c)] returns [true] if constant [s] occurs in c, [false] otherwise *) val occur_const : section_path -> constr -> bool (* [(occur_evar ev c)] returns [true] if existential variable [ev] occurs in c, [false] otherwise *) val occur_evar : existential_key -> constr -> bool (* [(occur_var id c)] returns [true] if variable [id] occurs free in c, [false] otherwise *) val occur_var : identifier -> 'a term -> bool (* [dependent M N] is true iff M is eq_constr with a subterm of N M is appropriately lifted through abstractions of N *) val dependent : constr -> constr -> bool (* strips head casts and flattens head applications *) val strip_head_cast : constr -> constr val whd_castapp_stack : constr -> constr list -> constr * constr list val whd_castapp : constr -> constr val rename_bound_var : identifier list -> constr -> constr val eta_reduce_head : constr -> constr val eq_constr : constr -> constr -> bool val eta_eq_constr : constr -> constr -> bool val subst_term : constr -> constr -> constr val subst_term_eta_eq : constr -> constr -> constr val replace_consts : (section_path * (identifier list * constr) option) list -> constr -> constr val subst_term_occ : int list -> constr -> constr -> constr (* [subst_meta bl c] substitutes the metavar $i$ by $c_i$ in [c] for each binding $(i,c_i)$ in [bl], and raises [Not_found] if [c] contains a meta that is not in the association list *) val subst_meta : (int * constr) list -> constr -> constr (*s Hash-consing functions for constr. *) val hcons_constr: (section_path -> section_path) * (section_path -> section_path) * (name -> name) * (identifier -> identifier) * (string -> string) -> (constr -> constr) * (constr -> constr) * (typed_type -> typed_type) val hcons1_constr : constr -> constr