(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* mkProd (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkNamedProd_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedProd id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c (* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *) let mkProd_wo_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkProd (na, t, c) | LocalDef (na,b,t) -> subst1 b c let mkNamedProd_wo_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedProd id t c | LocalDef (id,b,t) -> subst1 b (subst_var id c) (* non-dependent product t1 -> t2 *) let mkArrow t1 t2 = mkProd (Anonymous, t1, t2) (* Constructs either [[x:t]c] or [[x=b:t]c] *) let mkLambda_or_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkLambda (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkNamedLambda_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedLambda id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c (* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *) let prodn n env b = let rec prodrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b)) | _ -> assert false in prodrec (n,env,b) (* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *) let compose_prod l b = prodn (List.length l) l b (* lamn n [xn:Tn;..;x1:T1;Gamma] b = [x1:T1]..[xn:Tn]b *) let lamn n env b = let rec lamrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b)) | _ -> assert false in lamrec (n,env,b) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = lamn (List.length l) l b let applist (f,l) = mkApp (f, Array.of_list l) let applistc f l = mkApp (f, Array.of_list l) let appvect = mkApp let appvectc f l = mkApp (f,l) (* to_lambda n (x1:T1)...(xn:Tn)T = * [x1:T1]...[xn:Tn]T *) let rec to_lambda n prod = if Int.equal n 0 then prod else match kind prod with | Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda (n-1) bd) | Cast (c,_,_) -> to_lambda n c | _ -> user_err ~hdr:"to_lambda" (mt ()) let rec to_prod n lam = if Int.equal n 0 then lam else match kind lam with | Lambda (na,ty,bd) -> mkProd (na,ty,to_prod (n-1) bd) | Cast (c,_,_) -> to_prod n c | _ -> user_err ~hdr:"to_prod" (mt ()) let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c) let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c) (* Application with expected on-the-fly reduction *) let lambda_applist c l = let rec app subst c l = match kind c, l with | Lambda(_,_,c), arg::l -> app (arg::subst) c l | _, [] -> substl subst c | _ -> anomaly (Pp.str "Not enough lambda's.") in app [] c l let lambda_appvect c v = lambda_applist c (Array.to_list v) let lambda_applist_assum n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind t, l with | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough lambda/let's.") in app n [] c l let lambda_appvect_assum n c v = lambda_applist_assum n c (Array.to_list v) (* prod_applist T [ a1 ; ... ; an ] -> (T a1 ... an) *) let prod_applist c l = let rec app subst c l = match kind c, l with | Prod(_,_,c), arg::l -> app (arg::subst) c l | _, [] -> substl subst c | _ -> anomaly (Pp.str "Not enough prod's.") in app [] c l (* prod_appvect T [| a1 ; ... ; an |] -> (T a1 ... an) *) let prod_appvect c v = prod_applist c (Array.to_list v) let prod_applist_assum n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind t, l with | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough prod/let's.") in app n [] c l let prod_appvect_assum n c v = prod_applist_assum n c (Array.to_list v) (*********************************) (* Other term destructors *) (*********************************) (* Transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a product *) let decompose_prod = let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec ((x,t)::l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec [] (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam = let rec lamdec_rec l c = match kind c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec [] (* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_prod_n n = if n < 0 then user_err (str "decompose_prod_n: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else match kind c with | Prod (x,t,c) -> prodec_rec ((x,t)::l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | _ -> user_err (str "decompose_prod_n: not enough products") in prodec_rec [] n (* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_lam_n n = if n < 0 then user_err (str "decompose_lam_n: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match kind c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | _ -> user_err (str "decompose_lam_n: not enough abstractions") in lamdec_rec [] n (* Transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a product *) let decompose_prod_assum = let open Context.Rel.Declaration in let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec Context.Rel.empty (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam_assum = let rec lamdec_rec l c = let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec Context.Rel.empty (* Given a positive integer n, decompose a product or let-in term of the form [forall (x1:T1)..(xi:=ci:Ti)..(xn:Tn), T] into the pair of the quantifying context [(xn,None,Tn);..;(xi,Some ci,Ti);..;(x1,None,T1)] and of the inner type [T]) *) let decompose_prod_n_assum n = if n < 0 then user_err (str "decompose_prod_n_assum: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Prod (x,t,c) -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | c -> user_err (str "decompose_prod_n_assum: not enough assumptions") in prodec_rec Context.Rel.empty n (* Given a positive integer n, decompose a lambda or let-in term [fun (x1:T1)..(xi:=ci:Ti)..(xn:Tn) => T] into the pair of the abstracted context [(xn,None,Tn);...;(xi,Some ci,Ti);...;(x1,None,T1)] and of the inner body [T]. Lets in between are not expanded but turn into local definitions, but n is the actual number of destructurated lambdas. *) let decompose_lam_n_assum n = if n < 0 then user_err (str "decompose_lam_n_assum: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) n c | Cast (c,_,_) -> lamdec_rec l n c | c -> user_err (str "decompose_lam_n_assum: not enough abstractions") in lamdec_rec Context.Rel.empty n (* Same, counting let-in *) let decompose_lam_n_decls n = if n < 0 then user_err (str "decompose_lam_n_decls: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | c -> user_err (str "decompose_lam_n_decls: not enough abstractions") in lamdec_rec Context.Rel.empty n let prod_assum t = fst (decompose_prod_assum t) let prod_n_assum n t = fst (decompose_prod_n_assum n t) let strip_prod_assum t = snd (decompose_prod_assum t) let strip_prod t = snd (decompose_prod t) let strip_prod_n n t = snd (decompose_prod_n n t) let lam_assum t = fst (decompose_lam_assum t) let lam_n_assum n t = fst (decompose_lam_n_assum n t) let strip_lam_assum t = snd (decompose_lam_assum t) let strip_lam t = snd (decompose_lam t) let strip_lam_n n t = snd (decompose_lam_n n t) (***************************) (* Arities *) (***************************) (* An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort. Such a term can canonically be seen as the pair of a context of types and of a sort *) type arity = Constr.rel_context * Sorts.t let destArity = let open Context.Rel.Declaration in let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t) :: l) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) c | Cast (c,_,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly ~label:"destArity" (Pp.str "not an arity.") in prodec_rec [] let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign let rec isArity c = match kind c with | Prod (_,_,c) -> isArity c | LetIn (_,b,_,c) -> isArity (subst1 b c) | Cast (c,_,_) -> isArity c | Sort _ -> true | _ -> false (** Kind of type *) (* Experimental, used in Presburger contrib *) type ('constr, 'types) kind_of_type = | SortType of Sorts.t | CastType of 'types * 'types | ProdType of Name.t * 'types * 'types | LetInType of Name.t * 'constr * 'types * 'types | AtomicType of 'constr * 'constr array let kind_of_type t = match kind t with | Sort s -> SortType s | Cast (c,_,t) -> CastType (c, t) | Prod (na,t,c) -> ProdType (na, t, c) | LetIn (na,b,t,c) -> LetInType (na, b, t, c) | App (c,l) -> AtomicType (c, l) | (Rel _ | Meta _ | Var _ | Evar _ | Const _ | Proj _ | Case _ | Fix _ | CoFix _ | Ind _) -> AtomicType (t,[||]) | (Lambda _ | Construct _) -> failwith "Not a type"