(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* decl | _ :: sign -> lookup_named id sign | [] -> raise Not_found let named_context_length = List.length let vars_of_named_context = List.map (fun (id,_,_) -> id) let instance_from_named_context sign = let rec inst_rec = function | (id,None,_) :: sign -> mkVar id :: inst_rec sign | _ :: sign -> inst_rec sign | [] -> [] in Array.of_list (inst_rec sign) let fold_named_context f l ~init = List.fold_right f l init let fold_named_context_reverse f ~init l = List.fold_left f init l (*s Signatures of ordered section variables *) type section_context = named_context (*s Signatures of ordered optionally named variables, intended to be accessed by de Bruijn indices (to represent bound variables) *) type rel_declaration = name * constr option * types type rel_context = rel_declaration list let empty_rel_context = [] let add_rel_decl d ctxt = d::ctxt let lookup_rel n sign = let rec lookrec = function | (1, decl :: _) -> decl | (n, _ :: sign) -> lookrec (n-1,sign) | (_, []) -> raise Not_found in lookrec (n,sign) let rel_context_length = List.length let rel_context_nhyps hyps = let rec nhyps acc = function | [] -> acc | (_,None,_)::hyps -> nhyps (1+acc) hyps | (_,Some _,_)::hyps -> nhyps acc hyps in nhyps 0 hyps let fold_rel_context f l ~init:x = List.fold_right f l x let fold_rel_context_reverse f ~init:x l = List.fold_left f x l let map_rel_context f l = let map_decl (n, body_o, typ as decl) = let body_o' = option_smartmap f body_o in let typ' = f typ in if body_o' == body_o && typ' == typ then decl else (n, body_o', typ') in list_smartmap map_decl l (* Push named declarations on top of a rel context *) (* Bizarre. Should be avoided. *) let push_named_to_rel_context hyps ctxt = let rec push = function | (id,b,t) :: l -> let s, hyps = push l in let d = (Name id, option_app (subst_vars s) b, type_app (subst_vars s) t) in id::s, d::hyps | [] -> [],[] in let s, hyps = push hyps in let rec subst = function | d :: l -> let n, ctxt = subst l in (n+1), (map_rel_declaration (substn_vars n s) d)::ctxt | [] -> 1, hyps in snd (subst ctxt) (*********************************) (* Term constructors *) (*********************************) let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c) let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c) (*********************************) (* Term destructors *) (*********************************) type arity = rel_context * sorts (* Decompose an arity (i.e. a product of the form (x1:T1)..(xn:Tn)s with s a sort) into the pair ([(xn,Tn);...;(x1,T1)],s) *) let destArity = let rec prodec_rec l c = match kind_of_term c with | Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c | LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c | Cast (c,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly "destArity: not an arity" in prodec_rec [] let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign let rec isArity c = match kind_of_term c with | Prod (_,_,c) -> isArity c | LetIn (_,b,_,c) -> isArity (subst1 b c) | Cast (c,_) -> isArity c | Sort _ -> true | _ -> false (* Transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a product *) let decompose_prod_assum = let rec prodec_rec l c = match kind_of_term c with | Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) c | LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) c | Cast (c,_) -> prodec_rec l c | _ -> l,c in prodec_rec empty_rel_context (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam_assum = let rec lamdec_rec l c = match kind_of_term c with | Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) c | LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) c | Cast (c,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec empty_rel_context (* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_prod_n_assum n = if n < 0 then error "decompose_prod_n_assum: integer parameter must be positive"; let rec prodec_rec l n c = if n=0 then l,c else match kind_of_term c with | Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) (n-1) c | Cast (c,_) -> prodec_rec l n c | c -> error "decompose_prod_n_assum: not enough assumptions" in prodec_rec empty_rel_context n (* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_lam_n_assum n = if n < 0 then error "decompose_lam_n_assum: integer parameter must be positive"; let rec lamdec_rec l n c = if n=0 then l,c else match kind_of_term c with | Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) (n-1) c | Cast (c,_) -> lamdec_rec l n c | c -> error "decompose_lam_n_assum: not enough abstractions" in lamdec_rec empty_rel_context n