(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* constr -> constr val whd_all : env -> constr -> constr val whd_allnolet : env -> constr -> constr val whd_betaiota : env -> constr -> constr val nf_betaiota : env -> constr -> constr (*********************************************************************** s conversion functions *) exception NotConvertible exception NotConvertibleVect of int type 'a kernel_conversion_function = env -> 'a -> 'a -> unit type 'a extended_conversion_function = ?l2r:bool -> ?reds:Names.transparent_state -> env -> ?evars:((existential->constr option) * UGraph.t) -> 'a -> 'a -> unit type conv_pb = CONV | CUMUL type 'a universe_compare = { (* Might raise NotConvertible *) compare_sorts : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a -> 'a; compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a; compare_cumul_instances : conv_pb -> Univ.Variance.t array -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a } type 'a universe_state = 'a * 'a universe_compare type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.Constraint.t val get_cumulativity_constraints : conv_pb -> Univ.Variance.t array -> Univ.Instance.t -> Univ.Instance.t -> Univ.Constraint.t val inductive_cumulativity_arguments : (Declarations.mutual_inductive_body * int) -> int val constructor_cumulativity_arguments : (Declarations.mutual_inductive_body * int * int) -> int val sort_cmp_universes : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a * 'a universe_compare -> 'a * 'a universe_compare (* [flex] should be true for constants, false for inductive types and constructors. *) val convert_instances : flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a * 'a universe_compare -> 'a * 'a universe_compare (** These two never raise UnivInconsistency, inferred_universes just gathers the constraints. *) val checked_universes : UGraph.t universe_compare val inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare (** These two functions can only raise NotConvertible *) val conv : constr extended_conversion_function val conv_leq : types extended_conversion_function (** These conversion functions are used by module subtyping, which needs to infer universe constraints inside the kernel *) val infer_conv : ?l2r:bool -> ?evars:(existential->constr option) -> ?ts:Names.transparent_state -> constr infer_conversion_function val infer_conv_leq : ?l2r:bool -> ?evars:(existential->constr option) -> ?ts:Names.transparent_state -> types infer_conversion_function (** Depending on the universe state functions, this might raise [UniverseInconsistency] in addition to [NotConvertible] (for better error messages). *) val generic_conv : conv_pb -> l2r:bool -> (existential->constr option) -> Names.transparent_state -> (constr,'a) generic_conversion_function val default_conv : conv_pb -> ?l2r:bool -> types kernel_conversion_function val default_conv_leq : ?l2r:bool -> types kernel_conversion_function (************************************************************************) (** Builds an application node, reducing beta redexes it may produce. *) val beta_applist : constr -> constr list -> constr (** Builds an application node, reducing beta redexes it may produce. *) val beta_appvect : constr -> constr array -> constr (** Builds an application node, reducing beta redexe it may produce. *) val beta_app : constr -> constr -> constr (** Pseudo-reduction rule Prod(x,A,B) a --> B[x\a] *) val hnf_prod_applist : env -> types -> constr list -> types (** In [hnf_prod_applist_assum n c args], [c] is supposed to (whd-)reduce to the form [∀Γ.t] with [Γ] of length [n] and possibly with let-ins; it returns [t] with the assumptions of [Γ] instantiated by [args] and the local definitions of [Γ] expanded. *) val hnf_prod_applist_assum : env -> int -> types -> constr list -> types (** Compatibility alias for Term.lambda_appvect_assum *) val betazeta_appvect : int -> constr -> constr array -> constr (*********************************************************************** s Recognizing products and arities modulo reduction *) val dest_prod : env -> types -> Constr.rel_context * types val dest_prod_assum : env -> types -> Constr.rel_context * types val dest_lam : env -> constr -> Constr.rel_context * constr val dest_lam_assum : env -> constr -> Constr.rel_context * constr exception NotArity val dest_arity : env -> types -> Term.arity (* raises NotArity if not an arity *) val is_arity : env -> types -> bool val eta_expand : env -> constr -> types -> constr