(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* None | ConstKey cst when not (Cpred.mem cst csts) -> None | _ -> unfold_reference infos k let rec is_empty_stack = function [] -> true | Zupdate _::s -> is_empty_stack s | Zshift _::s -> is_empty_stack s | _ -> false (* Compute the lift to be performed on a term placed in a given stack *) let el_stack el stk = let n = List.fold_left (fun i z -> match z with Zshift n -> i+n | _ -> i) 0 stk in el_shft n el let compare_stack_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> bal=0 | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2 | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2 | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2 | (Zcase(c1,_,_)::s1, Zcase(c2,_,_)::s2) -> bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) -> bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | (_,_) -> false in compare_rec 0 stk1 stk2 type lft_constr_stack_elt = Zlapp of (lift * fconstr) array | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * fconstr * fconstr array and lft_constr_stack = lft_constr_stack_elt list let rec zlapp v = function Zlapp v2 :: s -> zlapp (Array.append v v2) s | s -> Zlapp v :: s let pure_stack lfts stk = let rec pure_rec lfts stk = match stk with [] -> (lfts,[]) | zi::s -> (match (zi,pure_rec lfts s) with (Zupdate _,lpstk) -> lpstk | (Zshift n,(l,pstk)) -> (el_shft n l, pstk) | (Zapp a, (l,pstk)) -> (l,zlapp (Array.map (fun t -> (l,t)) a) pstk) | (Zfix(fx,a),(l,pstk)) -> let (lfx,pa) = pure_rec l a in (l, Zlfix((lfx,fx),pa)::pstk) | (Zcase(ci,p,br),(l,pstk)) -> (l,Zlcase(ci,l,p,br)::pstk)) in snd (pure_rec lfts stk) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) let nf_betaiota t = norm_val (create_clos_infos betaiota empty_env) (inject t) let whd_betaiotazeta x = match kind_of_term x with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> x | _ -> whd_val (create_clos_infos betaiotazeta empty_env) (inject x) let whd_betadeltaiota env t = match kind_of_term t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | _ -> whd_val (create_clos_infos betadeltaiota env) (inject t) let whd_betadeltaiota_nolet env t = match kind_of_term t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t | _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t) (* Beta *) let beta_appvect c v = let rec stacklam env t stack = match kind_of_term t, stack with Lambda(_,_,c), arg::stacktl -> stacklam (arg::env) c stacktl | _ -> applist (substl env t, stack) in stacklam [] c (Array.to_list v) let betazeta_appvect n c v = let rec stacklam n env t stack = if n = 0 then applist (substl env t, stack) else match kind_of_term t, stack with Lambda(_,_,c), arg::stacktl -> stacklam (n-1) (arg::env) c stacktl | LetIn(_,b,_,c), _ -> stacklam (n-1) (b::env) c stack | _ -> anomaly "Not enough lambda/let's" in stacklam n [] c (Array.to_list v) (********************************************************************) (* Conversion *) (********************************************************************) (* Conversion utility functions *) type 'a conversion_function = env -> 'a -> 'a -> Univ.constraints type 'a trans_conversion_function = transparent_state -> env -> 'a -> 'a -> Univ.constraints exception NotConvertible exception NotConvertibleVect of int let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv = let rec cmp_rec pstk1 pstk2 cuniv = match (pstk1,pstk2) with | (z1::s1, z2::s2) -> let cu1 = cmp_rec s1 s2 cuniv in (match (z1,z2) with | (Zlapp a1,Zlapp a2) -> array_fold_right2 f a1 a2 cu1 | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> let cu2 = f fx1 fx2 cu1 in cmp_rec a1 a2 cu2 | (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) -> if not (fmind ci1.ci_ind ci2.ci_ind) then raise NotConvertible; let cu2 = f (l1,p1) (l2,p2) cu1 in array_fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2 | _ -> assert false) | _ -> cuniv in if compare_stack_shape stk1 stk2 then cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv else raise NotConvertible (* Convertibility of sorts *) (* The sort cumulativity is Prop <= Set <= Type 1 <= ... <= Type i <= ... and this holds whatever Set is predicative or impredicative *) type conv_pb = | CONV | CUMUL let sort_cmp pb s0 s1 cuniv = match (s0,s1) with | (Prop c1, Prop c2) -> if c1 = Null or c2 = Pos then cuniv (* Prop <= Set *) else raise NotConvertible | (Prop c1, Type u) when pb = CUMUL -> assert (is_univ_variable u); cuniv | (Type u1, Type u2) -> assert (is_univ_variable u2); (match pb with | CONV -> enforce_eq u1 u2 cuniv | CUMUL -> enforce_geq u2 u1 cuniv) | (_, _) -> raise NotConvertible let conv_sort env s0 s1 = sort_cmp CONV s0 s1 Constraint.empty let conv_sort_leq env s0 s1 = sort_cmp CUMUL s0 s1 Constraint.empty let rec no_arg_available = function | [] -> true | Zupdate _ :: stk -> no_arg_available stk | Zshift _ :: stk -> no_arg_available stk | Zapp v :: stk -> Array.length v = 0 && no_arg_available stk | Zcase _ :: _ -> true | Zfix _ :: _ -> true let rec no_nth_arg_available n = function | [] -> true | Zupdate _ :: stk -> no_nth_arg_available n stk | Zshift _ :: stk -> no_nth_arg_available n stk | Zapp v :: stk -> let k = Array.length v in if n >= k then no_nth_arg_available (n-k) stk else false | Zcase _ :: _ -> true | Zfix _ :: _ -> true let rec no_case_available = function | [] -> true | Zupdate _ :: stk -> no_case_available stk | Zshift _ :: stk -> no_case_available stk | Zapp _ :: stk -> no_case_available stk | Zcase _ :: _ -> false | Zfix _ :: _ -> true let in_whnf (t,stk) = match fterm_of t with | (FLetIn _ | FCases _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false | FLambda _ -> no_arg_available stk | FConstruct _ -> no_case_available stk | FCoFix _ -> no_case_available stk | FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk | (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _) -> true | FLOCKED -> assert false (* Conversion between [lft1]term1 and [lft2]term2 *) let rec ccnv cv_pb infos lft1 lft2 term1 term2 cuniv = eqappr cv_pb infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv (* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *) and eqappr cv_pb infos (lft1,st1) (lft2,st2) cuniv = Util.check_for_interrupt (); (* First head reduce both terms *) let rec whd_both (t1,stk1) (t2,stk2) = let st1' = whd_stack (snd infos) t1 stk1 in let st2' = whd_stack (snd infos) t2 stk2 in (* Now, whd_stack on term2 might have modified st1 (due to sharing), and st1 might not be in whnf anymore. If so, we iterate ccnv. *) if in_whnf st1' then (st1',st2') else whd_both st1' st2' in let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in (* compute the lifts that apply to the head of the term (hd1 and hd2) *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in match (fterm_of hd1, fterm_of hd2) with (* case of leaves *) | (FAtom a1, FAtom a2) -> (match kind_of_term a1, kind_of_term a2 with | (Sort s1, Sort s2) -> assert (is_empty_stack v1 && is_empty_stack v2); sort_cmp cv_pb s1 s2 cuniv | (Meta n, Meta m) -> if n=m then convert_stacks infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | _ -> raise NotConvertible) | (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) -> if ev1=ev2 then let u1 = convert_stacks infos lft1 lft2 v1 v2 cuniv in convert_vect infos el1 el2 (Array.map (mk_clos env1) args1) (Array.map (mk_clos env2) args2) u1 else raise NotConvertible (* 2 index known to be bound to no constant *) | (FRel n, FRel m) -> if reloc_rel n el1 = reloc_rel m el2 then convert_stacks infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* 2 constants, 2 local defined vars or 2 defined rels *) | (FFlex fl1, FFlex fl2) -> (try (* try first intensional equality *) if fl1 = fl2 then convert_stacks infos lft1 lft2 v1 v2 cuniv else raise NotConvertible with NotConvertible -> (* else the oracle tells which constant is to be expanded *) let (app1,app2) = if Conv_oracle.oracle_order fl1 fl2 then match unfold_reference infos fl1 with | Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2) | None -> (match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2)) | None -> raise NotConvertible) else match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2)) | None -> (match unfold_reference infos fl1 with | Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2) | None -> raise NotConvertible) in eqappr cv_pb infos app1 app2 cuniv) (* only one constant, defined var or defined rel *) | (FFlex fl1, _) -> (match unfold_reference infos fl1 with | Some def1 -> eqappr cv_pb infos (lft1, whd_stack (snd infos) def1 v1) appr2 cuniv | None -> raise NotConvertible) | (_, FFlex fl2) -> (match unfold_reference infos fl2 with | Some def2 -> eqappr cv_pb infos appr1 (lft2, whd_stack (snd infos) def2 v2) cuniv | None -> raise NotConvertible) (* other constructors *) | (FLambda _, FLambda _) -> assert (is_empty_stack v1 && is_empty_stack v2); let (_,ty1,bd1) = destFLambda mk_clos hd1 in let (_,ty2,bd2) = destFLambda mk_clos hd2 in let u1 = ccnv CONV infos el1 el2 ty1 ty2 cuniv in ccnv CONV infos (el_lift el1) (el_lift el2) bd1 bd2 u1 | (FProd (_,c1,c2), FProd (_,c'1,c'2)) -> assert (is_empty_stack v1 && is_empty_stack v2); (* Luo's system *) let u1 = ccnv CONV infos el1 el2 c1 c'1 cuniv in ccnv cv_pb infos (el_lift el1) (el_lift el2) c2 c'2 u1 (* Inductive types: MutInd MutConstruct Fix Cofix *) | (FInd ind1, FInd ind2) -> if mind_equiv_infos (snd infos) ind1 ind2 then convert_stacks infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FConstruct (ind1,j1), FConstruct (ind2,j2)) -> if j1 = j2 && mind_equiv_infos (snd infos) ind1 ind2 then convert_stacks infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) -> if op1 = op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in let u2 = convert_vect infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in convert_stacks infos lft1 lft2 v1 v2 u2 else raise NotConvertible | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) -> if op1 = op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in let u2 = convert_vect infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in convert_stacks infos lft1 lft2 v1 v2 u2 else raise NotConvertible (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *) | ( (FLetIn _, _) | (FCases _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_) | (_, FLetIn _) | (_,FCases _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED) ) -> assert false (* In all other cases, terms are not convertible *) | _ -> raise NotConvertible and convert_stacks infos lft1 lft2 stk1 stk2 cuniv = compare_stacks (fun (l1,t1) (l2,t2) c -> ccnv CONV infos l1 l2 t1 t2 c) (mind_equiv_infos (snd infos)) lft1 stk1 lft2 stk2 cuniv and convert_vect infos lft1 lft2 v1 v2 cuniv = let lv1 = Array.length v1 in let lv2 = Array.length v2 in if lv1 = lv2 then let rec fold n univ = if n >= lv1 then univ else let u1 = ccnv CONV infos lft1 lft2 v1.(n) v2.(n) univ in fold (n+1) u1 in fold 0 cuniv else raise NotConvertible let clos_fconv trans cv_pb evars env t1 t2 = let infos = trans, create_clos_infos ~evars betaiotazeta env in ccnv cv_pb infos ELID ELID (inject t1) (inject t2) Constraint.empty let trans_fconv reds cv_pb evars env t1 t2 = if eq_constr t1 t2 then Constraint.empty else clos_fconv reds cv_pb evars env t1 t2 let trans_conv_cmp conv reds = trans_fconv reds conv (fun _->None) let trans_conv ?(evars=fun _->None) reds = trans_fconv reds CONV evars let trans_conv_leq ?(evars=fun _->None) reds = trans_fconv reds CUMUL evars let fconv = trans_fconv (Idpred.full, Cpred.full) let conv_cmp cv_pb = fconv cv_pb (fun _->None) let conv ?(evars=fun _->None) = fconv CONV evars let conv_leq ?(evars=fun _->None) = fconv CUMUL evars let conv_leq_vecti ?(evars=fun _->None) env v1 v2 = array_fold_left2_i (fun i c t1 t2 -> let c' = try conv_leq ~evars env t1 t2 with NotConvertible -> raise (NotConvertibleVect i) in Constraint.union c c') Constraint.empty v1 v2 (* option for conversion *) let vm_conv = ref (fun cv_pb -> fconv cv_pb (fun _->None)) let set_vm_conv f = vm_conv := f let vm_conv cv_pb env t1 t2 = try !vm_conv cv_pb env t1 t2 with Not_found | Invalid_argument _ -> (* If compilation fails, fall-back to closure conversion *) fconv cv_pb (fun _->None) env t1 t2 let default_conv = ref (fun cv_pb -> fconv cv_pb (fun _->None)) let set_default_conv f = default_conv := f let default_conv cv_pb env t1 t2 = try !default_conv cv_pb env t1 t2 with Not_found | Invalid_argument _ -> (* If compilation fails, fall-back to closure conversion *) fconv cv_pb (fun _->None) env t1 t2 let default_conv_leq = default_conv CUMUL (* let convleqkey = Profile.declare_profile "Kernel_reduction.conv_leq";; let conv_leq env t1 t2 = Profile.profile4 convleqkey conv_leq env t1 t2;; let convkey = Profile.declare_profile "Kernel_reduction.conv";; let conv env t1 t2 = Profile.profile4 convleqkey conv env t1 t2;; *) (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env t n = match kind_of_term (whd_betadeltaiota env t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly "hnf_prod_app: Need a product" let hnf_prod_applist env t nl = List.fold_left (hnf_prod_app env) t nl (* Dealing with arities *) let dest_prod env = let rec decrec env m c = let t = whd_betadeltaiota env c in match kind_of_term t with | Prod (n,a,c0) -> let d = (n,None,a) in decrec (push_rel d env) (add_rel_decl d m) c0 | _ -> m,t in decrec env empty_rel_context (* The same but preserving lets *) let dest_prod_assum env = let rec prodec_rec env l ty = let rty = whd_betadeltaiota_nolet env ty in match kind_of_term rty with | Prod (x,t,c) -> let d = (x,None,t) in prodec_rec (push_rel d env) (add_rel_decl d l) c | LetIn (x,b,t,c) -> let d = (x,Some b,t) in prodec_rec (push_rel d env) (add_rel_decl d l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> l,rty in prodec_rec env empty_rel_context let dest_arity env c = let l, c = dest_prod_assum env c in match kind_of_term c with | Sort s -> l,s | _ -> error "not an arity" let is_arity env c = try let _ = dest_arity env c in true with UserError _ -> false