(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* if fatal then error x else Pp.msg_warning (str x)) (Unicode.ident_refutation x) let check_ident x = Option.iter (fun (_,x) -> Errors.error x) (Unicode.ident_refutation x) let id_of_string s = let () = check_ident_soft s in let s = String.copy s in hcons_string s let string_of_id id = String.copy id let id_ord = String.compare let id_eq = String.equal module IdOrdered = struct type t = identifier let compare = id_ord end module Idset = Set.Make(IdOrdered) module Idmap = struct include Map.Make(IdOrdered) exception Finded let exists f m = try iter (fun a b -> if f a b then raise Finded) m ; false with |Finded -> true let singleton k v = add k v empty end module Idpred = Predicate.Make(IdOrdered) (** {6 Various types based on identifiers } *) type name = Name of identifier | Anonymous type variable = identifier let name_eq n1 n2 = match n1, n2 with | Anonymous, Anonymous -> true | Name id1, Name id2 -> String.equal id1 id2 | _ -> false (** {6 Directory paths = section names paths } *) (** Dirpaths are lists of module identifiers. The actual representation is reversed to optimise sharing: Coq.A.B is ["B";"A";"Coq"] *) type module_ident = identifier type dir_path = module_ident list module ModIdmap = Idmap let rec dir_path_ord (p1 : dir_path) (p2 : dir_path) = if p1 == p2 then 0 else begin match p1, p2 with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | id1 :: p1, id2 :: p2 -> let c = id_ord id1 id2 in if Int.equal c 0 then dir_path_ord p1 p2 else c end let dir_path_eq p1 p2 = Int.equal (dir_path_ord p1 p2) 0 let make_dirpath x = x let repr_dirpath x = x let empty_dirpath = [] let is_empty_dirpath d = match d with [] -> true | _ -> false (** Printing of directory paths as ["coq_root.module.submodule"] *) let string_of_dirpath = function | [] -> "<>" | sl -> String.concat "." (List.rev_map string_of_id sl) (** {6 Unique names for bound modules } *) let u_number = ref 0 type uniq_ident = int * identifier * dir_path let make_uid dir s = incr u_number;(!u_number,s,dir) let debug_string_of_uid (i,s,p) = "<"(*^string_of_dirpath p ^"#"^*) ^ s ^"#"^ string_of_int i^">" let string_of_uid (i,s,p) = string_of_dirpath p ^"."^s let uniq_ident_ord (x : uniq_ident) (y : uniq_ident) = if x == y then 0 else match (x, y) with | (nl, idl, dpl), (nr, idr, dpr) -> let ans = Int.compare nl nr in if not (Int.equal ans 0) then ans else let ans = id_ord idl idr in if not (Int.equal ans 0) then ans else dir_path_ord dpl dpr module UOrdered = struct type t = uniq_ident let compare = uniq_ident_ord end module Umap = Map.Make(UOrdered) type mod_bound_id = uniq_ident let mod_bound_id_ord = uniq_ident_ord let mod_bound_id_eq mbl mbr = Int.equal (uniq_ident_ord mbl mbr) 0 let make_mbid = make_uid let repr_mbid (n, id, dp) = (n, id, dp) let debug_string_of_mbid = debug_string_of_uid let string_of_mbid = string_of_uid let id_of_mbid (_,s,_) = s (** {6 Names of structure elements } *) type label = identifier let mk_label = id_of_string let string_of_label = string_of_id let pr_label l = str (string_of_label l) let id_of_label l = l let label_of_id id = id let eq_label = String.equal module Labset = Idset module Labmap = Idmap (** {6 The module part of the kernel name } *) type module_path = | MPfile of dir_path | MPbound of mod_bound_id | MPdot of module_path * label let rec check_bound_mp = function | MPbound _ -> true | MPdot(mp,_) ->check_bound_mp mp | _ -> false let rec string_of_mp = function | MPfile sl -> string_of_dirpath sl | MPbound uid -> string_of_uid uid | MPdot (mp,l) -> string_of_mp mp ^ "." ^ string_of_label l (** we compare labels first if both are MPdots *) let rec mp_ord mp1 mp2 = if mp1 == mp2 then 0 else match (mp1, mp2) with | MPfile p1, MPfile p2 -> dir_path_ord p1 p2 | MPbound id1, MPbound id2 -> uniq_ident_ord id1 id2 | MPdot (mp1, l1), MPdot (mp2, l2) -> let c = String.compare l1 l2 in if not (Int.equal c 0) then c else mp_ord mp1 mp2 | MPfile _, _ -> -1 | MPbound _, MPfile _ -> 1 | MPbound _, MPdot _ -> -1 | MPdot _, _ -> 1 let mp_eq mp1 mp2 = Int.equal (mp_ord mp1 mp2) 0 module MPord = struct type t = module_path let compare = mp_ord end module MPset = Set.Make(MPord) module MPmap = Map.Make(MPord) let default_module_name = "If you see this, it's a bug" let initial_dir = make_dirpath [default_module_name] let initial_path = MPfile initial_dir (** {6 Kernel names } *) type kernel_name = module_path * dir_path * label let make_kn mp dir l = (mp,dir,l) let repr_kn kn = kn let modpath kn = let mp,_,_ = repr_kn kn in mp let label kn = let _,_,l = repr_kn kn in l let string_of_kn (mp,dir,l) = let str_dir = match dir with | [] -> "." | _ -> "#" ^ string_of_dirpath dir ^ "#" in string_of_mp mp ^ str_dir ^ string_of_label l let pr_kn kn = str (string_of_kn kn) let kn_ord (kn1 : kernel_name) (kn2 : kernel_name) = if kn1 == kn2 then 0 else let mp1, dir1, l1 = kn1 in let mp2, dir2, l2 = kn2 in let c = String.compare l1 l2 in if not (Int.equal c 0) then c else let c = dir_path_ord dir1 dir2 in if not (Int.equal c 0) then c else MPord.compare mp1 mp2 module KNord = struct type t = kernel_name let compare = kn_ord end module KNmap = Map.Make(KNord) module KNpred = Predicate.Make(KNord) module KNset = Set.Make(KNord) (** {6 Constant names } *) (** a constant name is a kernel name couple (kn1,kn2) where kn1 corresponds to the name used at toplevel (i.e. what the user see) and kn2 corresponds to the canonical kernel name i.e. in the environment we have {% kn1 \rhd_{\delta}^* kn2 \rhd_{\delta} t %} *) type constant = kernel_name*kernel_name let constant_of_kn kn = (kn,kn) let constant_of_kn_equiv kn1 kn2 = (kn1,kn2) let make_con mp dir l = constant_of_kn (mp,dir,l) let make_con_equiv mp1 mp2 dir l = ((mp1,dir,l),(mp2,dir,l)) let canonical_con con = snd con let user_con con = fst con let repr_con con = fst con let eq_constant (_, kn1) (_, kn2) = Int.equal (kn_ord kn1 kn2) 0 let con_label con = label (fst con) let con_modpath con = modpath (fst con) let string_of_con con = string_of_kn (fst con) let pr_con con = str (string_of_con con) let debug_string_of_con con = "(" ^ string_of_kn (fst con) ^ "," ^ string_of_kn (snd con) ^ ")" let debug_pr_con con = str (debug_string_of_con con) let con_with_label ((mp1,dp1,l1),(mp2,dp2,l2) as con) lbl = if String.equal lbl l1 && String.equal lbl l2 then con else ((mp1, dp1, lbl), (mp2, dp2, lbl)) (** For the environment we distinguish constants by their user part*) module User_ord = struct type t = kernel_name*kernel_name let compare x y= kn_ord (fst x) (fst y) end (** For other uses (ex: non-logical things) it is enough to deal with the canonical part *) module Canonical_ord = struct type t = kernel_name*kernel_name let compare x y= kn_ord (snd x) (snd y) end module Cmap = Map.Make(Canonical_ord) module Cmap_env = Map.Make(User_ord) module Cpred = Predicate.Make(Canonical_ord) module Cset = Set.Make(Canonical_ord) module Cset_env = Set.Make(User_ord) (** {6 Names of mutual inductive types } *) (** The same thing is done for mutual inductive names it replaces also the old mind_equiv field of mutual inductive types *) (** Beware: first inductive has index 0 *) (** Beware: first constructor has index 1 *) type mutual_inductive = kernel_name*kernel_name type inductive = mutual_inductive * int type constructor = inductive * int let mind_modpath mind = modpath (fst mind) let ind_modpath ind = mind_modpath (fst ind) let constr_modpath c = ind_modpath (fst c) let mind_of_kn kn = (kn,kn) let mind_of_kn_equiv kn1 kn2 = (kn1,kn2) let make_mind mp dir l = ((mp,dir,l),(mp,dir,l)) let make_mind_equiv mp1 mp2 dir l = ((mp1,dir,l),(mp2,dir,l)) let canonical_mind mind = snd mind let user_mind mind = fst mind let repr_mind mind = fst mind let mind_label mind = label (fst mind) let eq_mind (_, kn1) (_, kn2) = Int.equal (kn_ord kn1 kn2) 0 let string_of_mind mind = string_of_kn (fst mind) let pr_mind mind = str (string_of_mind mind) let debug_string_of_mind mind = "(" ^ string_of_kn (fst mind) ^ "," ^ string_of_kn (snd mind) ^ ")" let debug_pr_mind con = str (debug_string_of_mind con) let ith_mutual_inductive (kn, _) i = (kn, i) let ith_constructor_of_inductive ind i = (ind, i) let inductive_of_constructor (ind, i) = ind let index_of_constructor (ind, i) = i let eq_ind (kn1, i1) (kn2, i2) = Int.equal i1 i2 && eq_mind kn1 kn2 let eq_constructor (kn1, i1) (kn2, i2) = Int.equal i1 i2 && eq_ind kn1 kn2 module Mindmap = Map.Make(Canonical_ord) module Mindset = Set.Make(Canonical_ord) module Mindmap_env = Map.Make(User_ord) module InductiveOrdered = struct type t = inductive let compare (spx,ix) (spy,iy) = let c = Int.compare ix iy in if Int.equal c 0 then Canonical_ord.compare spx spy else c end module InductiveOrdered_env = struct type t = inductive let compare (spx,ix) (spy,iy) = let c = Int.compare ix iy in if Int.equal c 0 then User_ord.compare spx spy else c end module Indmap = Map.Make(InductiveOrdered) module Indmap_env = Map.Make(InductiveOrdered_env) module ConstructorOrdered = struct type t = constructor let compare (indx,ix) (indy,iy) = let c = Int.compare ix iy in if Int.equal c 0 then InductiveOrdered.compare indx indy else c end module ConstructorOrdered_env = struct type t = constructor let compare (indx,ix) (indy,iy) = let c = Int.compare ix iy in if Int.equal c 0 then InductiveOrdered_env.compare indx indy else c end module Constrmap = Map.Make(ConstructorOrdered) module Constrmap_env = Map.Make(ConstructorOrdered_env) (* Better to have it here that in closure, since used in grammar.cma *) type evaluable_global_reference = | EvalVarRef of identifier | EvalConstRef of constant let eq_egr e1 e2 = match e1, e2 with EvalConstRef con1, EvalConstRef con2 -> eq_constant con1 con2 | EvalVarRef id1, EvalVarRef id2 -> Int.equal (id_ord id1 id2) 0 | _, _ -> false (** {6 Hash-consing of name objects } *) module Hname = Hashcons.Make( struct type t = name type u = identifier -> identifier let hashcons hident = function | Name id -> Name (hident id) | n -> n let equal n1 n2 = n1 == n2 || match (n1,n2) with | (Name id1, Name id2) -> id1 == id2 | (Anonymous,Anonymous) -> true | _ -> false let hash = Hashtbl.hash end) module Hdir = Hashcons.Make( struct type t = dir_path type u = identifier -> identifier let hashcons hident d = List.smartmap hident d let rec equal d1 d2 = (d1==d2) || match (d1,d2) with | [],[] -> true | id1::d1,id2::d2 -> id1 == id2 & equal d1 d2 | _ -> false let hash = Hashtbl.hash end) module Huniqid = Hashcons.Make( struct type t = uniq_ident type u = (identifier -> identifier) * (dir_path -> dir_path) let hashcons (hid,hdir) (n,s,dir) = (n,hid s,hdir dir) let equal ((n1,s1,dir1) as x) ((n2,s2,dir2) as y) = (x == y) || (Int.equal n1 n2 && s1 == s2 && dir1 == dir2) let hash = Hashtbl.hash end) module Hmod = Hashcons.Make( struct type t = module_path type u = (dir_path -> dir_path) * (uniq_ident -> uniq_ident) * (string -> string) let rec hashcons (hdir,huniqid,hstr as hfuns) = function | MPfile dir -> MPfile (hdir dir) | MPbound m -> MPbound (huniqid m) | MPdot (md,l) -> MPdot (hashcons hfuns md, hstr l) let rec equal d1 d2 = d1 == d2 || match (d1,d2) with | MPfile dir1, MPfile dir2 -> dir1 == dir2 | MPbound m1, MPbound m2 -> m1 == m2 | MPdot (mod1,l1), MPdot (mod2,l2) -> l1 == l2 && equal mod1 mod2 | _ -> false let hash = Hashtbl.hash end) module Hkn = Hashcons.Make( struct type t = kernel_name type u = (module_path -> module_path) * (dir_path -> dir_path) * (string -> string) let hashcons (hmod,hdir,hstr) (md,dir,l) = (hmod md, hdir dir, hstr l) let equal (mod1,dir1,l1) (mod2,dir2,l2) = mod1 == mod2 && dir1 == dir2 && l1 == l2 let hash = Hashtbl.hash end) (** For [constant] and [mutual_inductive], we discriminate only on the user part : having the same user part implies having the same canonical part (invariant of the system). *) module Hcn = Hashcons.Make( struct type t = kernel_name*kernel_name type u = kernel_name -> kernel_name let hashcons hkn (user,can) = (hkn user, hkn can) let equal (user1,_) (user2,_) = user1 == user2 let hash (user,_) = Hashtbl.hash user end) module Hind = Hashcons.Make( struct type t = inductive type u = mutual_inductive -> mutual_inductive let hashcons hmind (mind, i) = (hmind mind, i) let equal (mind1,i1) (mind2,i2) = mind1 == mind2 && Int.equal i1 i2 let hash = Hashtbl.hash end) module Hconstruct = Hashcons.Make( struct type t = constructor type u = inductive -> inductive let hashcons hind (ind, j) = (hind ind, j) let equal (ind1, j1) (ind2, j2) = ind1 == ind2 && Int.equal j1 j2 let hash = Hashtbl.hash end) let hcons_ident = hcons_string let hcons_name = Hashcons.simple_hcons Hname.generate hcons_ident let hcons_dirpath = Hashcons.simple_hcons Hdir.generate hcons_ident let hcons_uid = Hashcons.simple_hcons Huniqid.generate (hcons_ident,hcons_dirpath) let hcons_mp = Hashcons.simple_hcons Hmod.generate (hcons_dirpath,hcons_uid,hcons_string) let hcons_kn = Hashcons.simple_hcons Hkn.generate (hcons_mp,hcons_dirpath,hcons_string) let hcons_con = Hashcons.simple_hcons Hcn.generate hcons_kn let hcons_mind = Hashcons.simple_hcons Hcn.generate hcons_kn let hcons_ind = Hashcons.simple_hcons Hind.generate hcons_mind let hcons_construct = Hashcons.simple_hcons Hconstruct.generate hcons_ind (*******) type transparent_state = Idpred.t * Cpred.t let empty_transparent_state = (Idpred.empty, Cpred.empty) let full_transparent_state = (Idpred.full, Cpred.full) let var_full_transparent_state = (Idpred.full, Cpred.empty) let cst_full_transparent_state = (Idpred.empty, Cpred.full) type 'a tableKey = | ConstKey of constant | VarKey of identifier | RelKey of 'a type inv_rel_key = int (* index in the [rel_context] part of environment starting by the end, {\em inverse} of de Bruijn indice *) type id_key = inv_rel_key tableKey let eq_id_key ik1 ik2 = if ik1 == ik2 then true else match ik1,ik2 with | ConstKey (u1, kn1), ConstKey (u2, kn2) -> let ans = Int.equal (kn_ord u1 u2) 0 in if ans then Int.equal (kn_ord kn1 kn2) 0 else ans | VarKey id1, VarKey id2 -> Int.equal (id_ord id1 id2) 0 | RelKey k1, RelKey k2 -> Int.equal k1 k2 | _ -> false let eq_con_chk (kn1,_) (kn2,_) = Int.equal (kn_ord kn1 kn2) 0 let eq_mind_chk (kn1,_) (kn2,_) = Int.equal (kn_ord kn1 kn2) 0 let eq_ind_chk (kn1,i1) (kn2,i2) = Int.equal i1 i2 && eq_mind_chk kn1 kn2