(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false |MoreFunctor _ -> true let destr_functor = function |NoFunctor _ -> error_not_a_functor () |MoreFunctor (mbid,ty,x) -> (mbid,ty,x) let destr_nofunctor = function |NoFunctor a -> a |MoreFunctor _ -> error_is_a_functor () let rec functor_smartmap fty f0 funct = match funct with |MoreFunctor (mbid,ty,e) -> let ty' = fty ty in let e' = functor_smartmap fty f0 e in if ty==ty' && e==e' then funct else MoreFunctor (mbid,ty',e') |NoFunctor a -> let a' = f0 a in if a==a' then funct else NoFunctor a' let rec functor_iter fty f0 = function |MoreFunctor (mbid,ty,e) -> fty ty; functor_iter fty f0 e |NoFunctor a -> f0 a (** {6 Misc operations } *) let module_type_of_module mb = { typ_mp = mb.mod_mp; typ_expr = mb.mod_type; typ_expr_alg = None; typ_constraints = mb.mod_constraints; typ_delta = mb.mod_delta } let module_body_of_type mp mtb = { mod_mp = mp; mod_type = mtb.typ_expr; mod_type_alg = mtb.typ_expr_alg; mod_expr = Abstract; mod_constraints = mtb.typ_constraints; mod_delta = mtb.typ_delta; mod_retroknowledge = [] } let check_modpath_equiv env mp1 mp2 = if ModPath.equal mp1 mp2 then () else let mp1' = mp_of_delta (lookup_module mp1 env).mod_delta mp1 in let mp2' = mp_of_delta (lookup_module mp2 env).mod_delta mp2 in if ModPath.equal mp1' mp2' then () else error_not_equal_modpaths mp1 mp2 let implem_smartmap fs fa impl = match impl with |Struct e -> let e' = fs e in if e==e' then impl else Struct e' |Algebraic a -> let a' = fa a in if a==a' then impl else Algebraic a' |Abstract|FullStruct -> impl let implem_iter fs fa impl = match impl with |Struct e -> fs e |Algebraic a -> fa a |Abstract|FullStruct -> () (** {6 Substitutions of modular structures } *) let id_delta x y = x let rec subst_with_body sub = function |WithMod(id,mp) as orig -> let mp' = subst_mp sub mp in if mp==mp' then orig else WithMod(id,mp') |WithDef(id,c) as orig -> let c' = subst_mps sub c in if c==c' then orig else WithDef(id,c') and subst_modtype sub do_delta mtb= let { typ_mp = mp; typ_expr = ty; typ_expr_alg = aty } = mtb in let mp' = subst_mp sub mp in let sub = if ModPath.equal mp mp' then sub else add_mp mp mp' empty_delta_resolver sub in let ty' = subst_signature sub do_delta ty in let aty' = Option.smartmap (subst_expression sub id_delta) aty in let delta' = do_delta mtb.typ_delta sub in if mp==mp' && ty==ty' && aty==aty' && delta'==mtb.typ_delta then mtb else { mtb with typ_mp = mp'; typ_expr = ty'; typ_expr_alg = aty'; typ_delta = delta' } and subst_structure sub do_delta sign = let subst_body ((l,body) as orig) = match body with |SFBconst cb -> let cb' = subst_const_body sub cb in if cb==cb' then orig else (l,SFBconst cb') |SFBmind mib -> let mib' = subst_mind_body sub mib in if mib==mib' then orig else (l,SFBmind mib') |SFBmodule mb -> let mb' = subst_module sub do_delta mb in if mb==mb' then orig else (l,SFBmodule mb') |SFBmodtype mtb -> let mtb' = subst_modtype sub do_delta mtb in if mtb==mtb' then orig else (l,SFBmodtype mtb') in List.smartmap subst_body sign and subst_module sub do_delta mb = let { mod_mp=mp; mod_expr=me; mod_type=ty; mod_type_alg=aty } = mb in let mp' = subst_mp sub mp in let sub = if not (is_functor ty) || ModPath.equal mp mp' then sub else add_mp mp mp' empty_delta_resolver sub in let ty' = subst_signature sub do_delta ty in let me' = implem_smartmap (subst_signature sub id_delta) (subst_expression sub id_delta) me in let aty' = Option.smartmap (subst_expression sub id_delta) aty in let delta' = do_delta mb.mod_delta sub in if mp==mp' && me==me' && ty==ty' && aty==aty' && delta'==mb.mod_delta then mb else { mb with mod_mp = mp'; mod_expr = me'; mod_type = ty'; mod_type_alg = aty'; mod_delta = delta' } and subst_expr sub do_delta seb = match seb with |MEident mp -> let mp' = subst_mp sub mp in if mp==mp' then seb else MEident mp' |MEapply (meb1,mp2) -> let meb1' = subst_expr sub do_delta meb1 in let mp2' = subst_mp sub mp2 in if meb1==meb1' && mp2==mp2' then seb else MEapply(meb1',mp2') |MEwith (meb,wdb) -> let meb' = subst_expr sub do_delta meb in let wdb' = subst_with_body sub wdb in if meb==meb' && wdb==wdb' then seb else MEwith(meb',wdb') and subst_expression sub do_delta = functor_smartmap (subst_modtype sub do_delta) (subst_expr sub do_delta) and subst_signature sub do_delta = functor_smartmap (subst_modtype sub do_delta) (subst_structure sub do_delta) let do_delta_dom reso sub = subst_dom_delta_resolver sub reso let do_delta_codom reso sub = subst_codom_delta_resolver sub reso let do_delta_dom_codom reso sub = subst_dom_codom_delta_resolver sub reso let subst_signature subst = subst_signature subst do_delta_codom let subst_structure subst = subst_structure subst do_delta_codom (** {6 Retroknowledge } *) (* spiwack: here comes the function which takes care of importing the retroknowledge declared in the library *) (* lclrk : retroknowledge_action list, rkaction : retroknowledge action *) let add_retroknowledge mp = let perform rkaction env = match rkaction with |Retroknowledge.RKRegister (f, e) when (isConst e || isInd e) -> Environ.register env f e |_ -> Errors.anomaly ~label:"Modops.add_retroknowledge" (Pp.str "had to import an unsupported kind of term") in fun lclrk env -> (* The order of the declaration matters, for instance (and it's at the time this comment is being written, the only relevent instance) the int31 type registration absolutely needs int31 bits to be registered. Since the local_retroknowledge is stored in reverse order (each new registration is added at the top of the list) we need a fold_right for things to go right (the pun is not intented). So we lose tail recursivity, but the world will have exploded before any module imports 10 000 retroknowledge registration.*) List.fold_right perform lclrk env (** {6 Adding a module in the environment } *) let rec add_structure mp sign resolver linkinfo env = let add_one env (l,elem) = match elem with |SFBconst cb -> let c = constant_of_delta_kn resolver (KerName.make2 mp l) in Environ.add_constant_key c cb linkinfo env |SFBmind mib -> let mind = mind_of_delta_kn resolver (KerName.make2 mp l) in let mib = if mib.mind_private != None then { mib with mind_private = Some true } else mib in Environ.add_mind_key mind (mib,linkinfo) env |SFBmodule mb -> add_module mb linkinfo env (* adds components as well *) |SFBmodtype mtb -> Environ.add_modtype mtb env in List.fold_left add_one env sign and add_module mb linkinfo env = let mp = mb.mod_mp in let env = Environ.shallow_add_module mb env in match mb.mod_type with |NoFunctor struc -> add_retroknowledge mp mb.mod_retroknowledge (add_structure mp struc mb.mod_delta linkinfo env) |MoreFunctor _ -> env let add_linked_module mb linkinfo env = add_module mb linkinfo env let add_structure mp sign resolver env = add_structure mp sign resolver (no_link_info ()) env let add_module mb env = add_module mb (no_link_info ()) env let add_module_type mp mtb env = add_module (module_body_of_type mp mtb) env (** {6 Strengtening } *) let strengthen_const mp_from l cb resolver = match cb.const_body with |Def _ -> cb |_ -> let kn = KerName.make2 mp_from l in let con = constant_of_delta_kn resolver kn in { cb with const_body = Def (Mod_subst.from_val (mkConst con)); const_body_code = Cemitcodes.from_val (Cbytegen.compile_alias con) } let rec strengthen_mod mp_from mp_to mb = if mp_in_delta mb.mod_mp mb.mod_delta then mb else match mb.mod_type with |NoFunctor struc -> let reso,struc' = strengthen_sig mp_from struc mp_to mb.mod_delta in { mb with mod_expr = Algebraic (NoFunctor (MEident mp_to)); mod_type = NoFunctor struc'; mod_delta = add_mp_delta_resolver mp_from mp_to (add_delta_resolver mb.mod_delta reso) } |MoreFunctor _ -> mb and strengthen_sig mp_from struc mp_to reso = match struc with |[] -> empty_delta_resolver,[] |(l,SFBconst cb) :: rest -> let item' = l,SFBconst (strengthen_const mp_from l cb reso) in let reso',rest' = strengthen_sig mp_from rest mp_to reso in reso',item'::rest' |(_,SFBmind _ as item):: rest -> let reso',rest' = strengthen_sig mp_from rest mp_to reso in reso',item::rest' |(l,SFBmodule mb) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let mb' = strengthen_mod mp_from' mp_to' mb in let item' = l,SFBmodule mb' in let reso',rest' = strengthen_sig mp_from rest mp_to reso in add_delta_resolver reso' mb.mod_delta, item':: rest' |(l,SFBmodtype mty as item) :: rest -> let reso',rest' = strengthen_sig mp_from rest mp_to reso in reso',item::rest' let strengthen mtb mp = (* Has mtb already been strengthened ? *) if mp_in_delta mtb.typ_mp mtb.typ_delta then mtb else match mtb.typ_expr with |NoFunctor struc -> let reso',struc' = strengthen_sig mtb.typ_mp struc mp mtb.typ_delta in { mtb with typ_expr = NoFunctor struc'; typ_delta = add_delta_resolver mtb.typ_delta (add_mp_delta_resolver mtb.typ_mp mp reso') } |MoreFunctor _ -> mtb let inline_delta_resolver env inl mp mbid mtb delta = let constants = inline_of_delta inl mtb.typ_delta in let rec make_inline delta = function | [] -> delta | (lev,kn)::r -> let kn = replace_mp_in_kn (MPbound mbid) mp kn in let con = constant_of_delta_kn delta kn in try let constant = lookup_constant con env in let l = make_inline delta r in match constant.const_body with | Undef _ | OpaqueDef _ -> l | Def body -> let constr = Mod_subst.force_constr body in add_inline_delta_resolver kn (lev, Some constr) l with Not_found -> error_no_such_label_sub (con_label con) (string_of_mp (con_modpath con)) in make_inline delta constants let rec strengthen_and_subst_mod mb subst mp_from mp_to = match mb.mod_type with |NoFunctor struc -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in if mb_is_an_alias then subst_module subst do_delta_dom mb else let reso',struc' = strengthen_and_subst_struct struc subst mp_from mp_to false false mb.mod_delta in { mb with mod_mp = mp_to; mod_expr = Algebraic (NoFunctor (MEident mp_from)); mod_type = NoFunctor struc'; mod_delta = add_mp_delta_resolver mp_to mp_from reso' } |MoreFunctor _ -> let subst = add_mp mb.mod_mp mp_to empty_delta_resolver subst in subst_module subst do_delta_dom mb and strengthen_and_subst_struct str subst mp_from mp_to alias incl reso = match str with | [] -> empty_delta_resolver,[] | (l,SFBconst cb) :: rest -> let cb' = subst_const_body subst cb in let cb'' = if alias then cb' else strengthen_const mp_from l cb' reso in let item' = l, SFBconst cb'' in let reso',rest' = strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso in if incl then (* If we are performing an inclusion we need to add the fact that the constant mp_to.l is \Delta-equivalent to reso(mp_from.l) *) let kn_from = KerName.make2 mp_from l in let kn_to = KerName.make2 mp_to l in let old_name = kn_of_delta reso kn_from in add_kn_delta_resolver kn_to old_name reso', item'::rest' else (* In this case the fact that the constant mp_to.l is \Delta-equivalent to resolver(mp_from.l) is already known because reso' contains mp_to maps to reso(mp_from) *) reso', item'::rest' | (l,SFBmind mib) :: rest -> let item' = l,SFBmind (subst_mind_body subst mib) in let reso',rest' = strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso in (* Same as constant *) if incl then let kn_from = KerName.make2 mp_from l in let kn_to = KerName.make2 mp_to l in let old_name = kn_of_delta reso kn_from in add_kn_delta_resolver kn_to old_name reso', item'::rest' else reso', item'::rest' | (l,SFBmodule mb) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot (mp_to,l) in let mb' = if alias then subst_module subst do_delta_dom mb else strengthen_and_subst_mod mb subst mp_from' mp_to' in let item' = l,SFBmodule mb' in let reso',rest' = strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso in (* if mb is a functor we should not derive new equivalences on names, hence we add the fact that the functor can only be equivalent to itself. If we adopt an applicative semantic for functor this should be changed.*) if is_functor mb'.mod_type then add_mp_delta_resolver mp_to' mp_to' reso', item':: rest' else add_delta_resolver reso' mb'.mod_delta, item':: rest' | (l,SFBmodtype mty) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let subst' = add_mp mp_from' mp_to' empty_delta_resolver subst in let mty = subst_modtype subst' (fun resolver _ -> subst_dom_codom_delta_resolver subst' resolver) mty in let item' = l,SFBmodtype mty in let reso',rest' = strengthen_and_subst_struct rest subst mp_from mp_to alias incl reso in add_mp_delta_resolver mp_to' mp_to' reso', item'::rest' (** Let P be a module path when we write: "Module M:=P." or "Module M. Include P. End M." We need to perform two operations to compute the body of M. - The first one is applying the substitution {P <- M} on the type of P - The second one is strenghtening. *) let strengthen_and_subst_mb mb mp include_b = match mb.mod_type with |NoFunctor struc -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in (* if mb.mod_mp is an alias then the strengthening is useless (i.e. it is already done)*) let mp_alias = mp_of_delta mb.mod_delta mb.mod_mp in let subst_resolver = map_mp mb.mod_mp mp empty_delta_resolver in let new_resolver = add_mp_delta_resolver mp mp_alias (subst_dom_delta_resolver subst_resolver mb.mod_delta) in let subst = map_mp mb.mod_mp mp new_resolver in let reso',struc' = strengthen_and_subst_struct struc subst mb.mod_mp mp mb_is_an_alias include_b mb.mod_delta in { mb with mod_mp = mp; mod_type = NoFunctor struc'; mod_expr = Algebraic (NoFunctor (MEident mb.mod_mp)); mod_delta = if include_b then reso' else add_delta_resolver new_resolver reso' } |MoreFunctor _ -> let subst = map_mp mb.mod_mp mp empty_delta_resolver in subst_module subst do_delta_dom_codom mb let subst_modtype_and_resolver mtb mp = let subst = map_mp mtb.typ_mp mp empty_delta_resolver in let new_delta = subst_dom_codom_delta_resolver subst mtb.typ_delta in let full_subst = map_mp mtb.typ_mp mp new_delta in subst_modtype full_subst do_delta_dom_codom mtb (** {6 Cleaning a module expression from bounded parts } For instance: functor(X:T)->struct module M:=X end) becomes: functor(X:T)->struct module M:= end) *) let rec is_bounded_expr l = function | MEident (MPbound mbid) -> MBIset.mem mbid l | MEapply (fexpr,mp) -> is_bounded_expr l (MEident mp) || is_bounded_expr l fexpr | _ -> false let rec clean_module l mb = let impl, typ = mb.mod_expr, mb.mod_type in let typ' = clean_signature l typ in let impl' = match impl with | Algebraic (NoFunctor m) when is_bounded_expr l m -> FullStruct | _ -> implem_smartmap (clean_signature l) (clean_expression l) impl in if typ==typ' && impl==impl' then mb else { mb with mod_type=typ'; mod_expr=impl' } and clean_modtype l mt = let ty = mt.typ_expr in let ty' = clean_signature l ty in if ty==ty' then mt else { mt with typ_expr=ty' } and clean_field l field = match field with |(lab,SFBmodule mb) -> let mb' = clean_module l mb in if mb==mb' then field else (lab,SFBmodule mb') |_ -> field and clean_structure l = List.smartmap (clean_field l) and clean_signature l = functor_smartmap (clean_modtype l) (clean_structure l) and clean_expression l = functor_smartmap (clean_modtype l) (fun me -> me) let rec collect_mbid l sign = match sign with |MoreFunctor (mbid,ty,m) -> let m' = collect_mbid (MBIset.add mbid l) m in if m==m' then sign else MoreFunctor (mbid,ty,m') |NoFunctor struc -> let struc' = clean_structure l struc in if struc==struc' then sign else NoFunctor struc' let clean_bounded_mod_expr sign = if is_functor sign then collect_mbid MBIset.empty sign else sign (** {6 Stm machinery } *) let join_constant_body except otab cb = match cb.const_body with | OpaqueDef o -> (match Opaqueproof.uuid_opaque otab o with | Some uuid when not(Future.UUIDSet.mem uuid except) -> Opaqueproof.join_opaque otab o | _ -> ()) | _ -> () let join_structure except otab s = let rec join_module mb = implem_iter join_signature join_expression mb.mod_expr; Option.iter join_expression mb.mod_type_alg; join_signature mb.mod_type and join_modtype mt = Option.iter join_expression mt.typ_expr_alg; join_signature mt.typ_expr and join_field (l,body) = match body with |SFBconst sb -> join_constant_body except otab sb |SFBmind _ -> () |SFBmodule m -> join_module m |SFBmodtype m -> join_modtype m and join_structure struc = List.iter join_field struc and join_signature sign = functor_iter join_modtype join_structure sign and join_expression me = functor_iter join_modtype (fun _ -> ()) me in join_structure s