(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* idset | c::cl -> if Id.Set.mem c idset then raise (InductiveError (SameNamesConstructors c)) else check (Id.Set.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Id.Set.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names cstset cl in check (Id.Set.add id indset) cstset' inds in check Id.Set.empty Id.Set.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (************************************************************************) (************************************************************************) (* Typing the arities and constructor types *) (* An inductive definition is a "unit" if it has only one constructor and that all arguments expected by this constructor are logical, this is the case for equality, conjunction of logical properties *) let is_unit constrsinfos = match constrsinfos with (* One info = One constructor *) | [level] -> is_type0m_univ level | [] -> (* type without constructors *) true | _ -> false let infos_and_sort env t = let rec aux env t max = let t = whd_betadeltaiota env t in match kind_of_term t with | Prod (name,c1,c2) -> let varj = infer_type env c1 in let env1 = Environ.push_rel (name,None,varj.utj_val) env in let max = Universe.sup max (univ_of_sort varj.utj_type) in aux env1 c2 max | _ when is_constructor_head t -> max | _ -> (* don't fail if not positive, it is tested later *) max in aux env t Universe.type0m (* Computing the levels of polymorphic inductive types For each inductive type of a block that is of level u_i, we have the constraints that u_i >= v_i where v_i is the type level of the types of the constructors of this inductive type. Each v_i depends of some of the u_i and of an extra (maybe non variable) universe, say w_i that summarize all the other constraints. Typically, for three inductive types, we could have u1,u2,u3,w1 <= u1 u1 w2 <= u2 u2,u3,w3 <= u3 From this system of inequations, we shall deduce w1,w2,w3 <= u1 w1,w2 <= u2 w1,w2,w3 <= u3 *) (* This (re)computes informations relevant to extraction and the sort of an arity or type constructor; we do not to recompute universes constraints *) let infer_constructor_packet env_ar_par params lc = (* type-check the constructors *) let jlc = List.map (infer_type env_ar_par) lc in let jlc = Array.of_list jlc in (* generalize the constructor over the parameters *) let lc'' = Array.map (fun j -> it_mkProd_or_LetIn j.utj_val params) jlc in (* compute the max of the sorts of the products of the constructors types *) let levels = List.map (infos_and_sort env_ar_par) lc in let isunit = is_unit levels in let min = if Array.length jlc > 1 then Universe.type0 else Universe.type0m in let level = List.fold_left (fun max l -> Universe.sup max l) min levels in (lc'', (isunit, level)) (* If indices matter *) let cumulate_arity_large_levels env sign = fst (List.fold_right (fun (_,b,t as d) (lev,env) -> if Option.is_empty b then let tj = infer_type env t in let u = univ_of_sort tj.utj_type in (Universe.sup u lev, push_rel d env) else lev, push_rel d env) sign (Universe.type0m,env)) let is_impredicative env u = is_type0m_univ u || (is_type0_univ u && is_impredicative_set env) (* Returns the list [x_1, ..., x_n] of levels contributing to template polymorphism. The elements x_k is None if the k-th parameter (starting from the most recent and ignoring let-definitions) is not contributing or is Some u_k if its level is u_k and is contributing. *) let param_ccls params = let fold acc = function (_, None, p) -> (let c = strip_prod_assum p in match kind_of_term c with | Sort (Type u) -> Univ.Universe.level u | _ -> None) :: acc | _ -> acc in List.fold_left fold [] params (* Type-check an inductive definition. Does not check positivity conditions. *) (* TODO check that we don't overgeneralize construcors/inductive arities with universes that are absent from them. Is it possible? *) let typecheck_inductive env mie = let () = match mie.mind_entry_inds with | [] -> anomaly (Pp.str "empty inductive types declaration") | _ -> () in (* Check unicity of names *) mind_check_names mie; (* Params are typed-checked here *) let env' = push_context mie.mind_entry_universes env in let (env_params, params) = infer_local_decls env' mie.mind_entry_params in (* We first type arity of each inductive definition *) (* This allows building the environment of arities and to share *) (* the set of constraints *) let env_arities, rev_arity_list = List.fold_left (fun (env_ar,l) ind -> (* Arities (without params) are typed-checked here *) let expltype = ind.mind_entry_template in let arity = if isArity ind.mind_entry_arity then let (ctx,s) = dest_arity env_params ind.mind_entry_arity in match s with | Type u when Univ.universe_level u = None -> (** We have an algebraic universe as the conclusion of the arity, typecheck the dummy Π ctx, Prop and do a special case for the conclusion. *) let proparity = infer_type env_params (mkArity (ctx, prop_sort)) in let (cctx, _) = destArity proparity.utj_val in (* Any universe is well-formed, we don't need to check [s] here *) mkArity (cctx, s) | _ -> let arity = infer_type env_params ind.mind_entry_arity in arity.utj_val else let arity = infer_type env_params ind.mind_entry_arity in arity.utj_val in let (sign, deflev) = dest_arity env_params arity in let inflev = (* The level of the inductive includes levels of indices if in indices_matter mode *) if !indices_matter then Some (cumulate_arity_large_levels env_params sign) else None in (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let full_arity = it_mkProd_or_LetIn arity params in let id = ind.mind_entry_typename in let env_ar' = push_rel (Name id, None, full_arity) env_ar in (* (add_constraints cst2 env_ar) in *) (env_ar', (id,full_arity,sign @ params,expltype,deflev,inflev)::l)) (env',[]) mie.mind_entry_inds in let arity_list = List.rev rev_arity_list in (* builds the typing context "Gamma, I1:A1, ... In:An, params" *) let env_ar_par = push_rel_context params env_arities in (* Now, we type the constructors (without params) *) let inds = List.fold_right2 (fun ind arity_data inds -> let (lc',cstrs_univ) = infer_constructor_packet env_ar_par params ind.mind_entry_lc in let consnames = ind.mind_entry_consnames in let ind' = (arity_data,consnames,lc',cstrs_univ) in ind'::inds) mie.mind_entry_inds arity_list ([]) in let inds = Array.of_list inds in (* Compute/check the sorts of the inductive types *) let inds = Array.map (fun ((id,full_arity,sign,expltype,def_level,inf_level),cn,lc,(is_unit,clev)) -> let infu = (** Inferred level, with parameters and constructors. *) match inf_level with | Some alev -> Universe.sup clev alev | None -> clev in let full_polymorphic () = let defu = Term.univ_of_sort def_level in let is_natural = type_in_type env || (check_leq (universes env') infu defu) in let _ = (** Impredicative sort, always allow *) if is_impredicative env defu then () else (** Predicative case: the inferred level must be lower or equal to the declared level. *) if not is_natural then anomaly ~label:"check_inductive" (Pp.str"Incorrect universe " ++ Universe.pr defu ++ Pp.str " declared for inductive type, inferred level is " ++ Universe.pr infu) in RegularArity (not is_natural,full_arity,defu) in let template_polymorphic () = let sign, s = try dest_arity env full_arity with NotArity -> raise (InductiveError (NotAnArity (env, full_arity))) in match s with | Type u when expltype (* Explicitly polymorphic *) -> (* The polymorphic level is a function of the level of the *) (* conclusions of the parameters *) (* We enforce [u >= lev] in case [lev] has a strict upper *) (* constraints over [u] *) let b = type_in_type env || check_leq (universes env') infu u in if not b then anomaly ~label:"check_inductive" (Pp.str"Incorrect universe " ++ Universe.pr u ++ Pp.str " declared for inductive type, inferred level is " ++ Universe.pr clev) else TemplateArity (param_ccls params, infu) | _ (* Not an explicit occurrence of Type *) -> full_polymorphic () in let arity = if mie.mind_entry_polymorphic then full_polymorphic () else template_polymorphic () in (id,cn,lc,(sign,arity))) inds in (env_arities, env_ar_par, params, inds) (************************************************************************) (************************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor of rel_context * int | LocalNonPar of int * int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err id ntyp env nbpar c err = let (lpar,c') = mind_extract_params nbpar c in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',mkRel (kt+nbpar)))) | LocalNotConstructor (paramsctxt,nargs)-> let nparams = rel_context_nhyps paramsctxt in raise (InductiveError (NotConstructor (env,id,c',mkRel (ntyp+nbpar),nparams,nargs))) | LocalNonPar (n,i,l) -> raise (InductiveError (NonPar (env,c',n,mkRel i, mkRel (l+nbpar)))) let failwith_non_pos n ntypes c = for k = n to n + ntypes - 1 do if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1))) done let failwith_non_pos_vect n ntypes v = Array.iter (failwith_non_pos n ntypes) v; anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur") let failwith_non_pos_list n ntypes l = List.iter (failwith_non_pos n ntypes) l; anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur") (* Check the inductive type is called with the expected parameters *) let check_correct_par (env,n,ntypes,_) hyps l largs = let nparams = rel_context_nhyps hyps in let largs = Array.of_list largs in if Array.length largs < nparams then raise (IllFormedInd (LocalNotEnoughArgs l)); let (lpar,largs') = Array.chop nparams largs in let nhyps = List.length hyps in let rec check k index = function | [] -> () | (_,Some _,_)::hyps -> check k (index+1) hyps | _::hyps -> match kind_of_term (whd_betadeltaiota env lpar.(k)) with | Rel w when Int.equal w index -> check (k-1) (index+1) hyps | _ -> raise (IllFormedInd (LocalNonPar (k+1, index-n+nhyps+1, l))) in check (nparams-1) (n-nhyps) hyps; if not (Array.for_all (noccur_between n ntypes) largs') then failwith_non_pos_vect n ntypes largs' (* Computes the maximum number of recursive parameters : the first parameters which are constant in recursive arguments n is the current depth, nmr is the maximum number of possible recursive parameters *) let compute_rec_par (env,n,_,_) hyps nmr largs = if Int.equal nmr 0 then 0 else (* start from 0, hyps will be in reverse order *) let (lpar,_) = List.chop nmr largs in let rec find k index = function ([],_) -> nmr | (_,[]) -> assert false (* |hyps|>=nmr *) | (lp,(_,Some _,_)::hyps) -> find k (index-1) (lp,hyps) | (p::lp,_::hyps) -> ( match kind_of_term (whd_betadeltaiota env p) with | Rel w when Int.equal w index -> find (k+1) (index-1) (lp,hyps) | _ -> k) in find 0 (n-1) (lpar,List.rev hyps) (* [env] is the typing environment [n] is the dB of the last inductive type [ntypes] is the number of inductive types in the definition (i.e. range of inductives is [n; n+ntypes-1]) [lra] is the list of recursive tree of each variable *) let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (x,None,a) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lpar) = let auxntyp = 1 in let specif = (lookup_mind_specif env mi, u) in let ty = type_of_inductive env specif in let env' = push_rel (Anonymous,None, hnf_prod_applist env ty lpar) env in let ra_env' = (Imbr mi,(Rtree.mk_rec_calls 1).(0)) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') let rec ienv_decompose_prod (env,_,_,_ as ienv) n c = if Int.equal n 0 then (ienv,c) else let c' = whd_betadeltaiota env c in match kind_of_term c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false let array_min nmr a = if Int.equal nmr 0 then 0 else Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a (* The recursive function that checks positivity and builds the list of recursive arguments *) let check_positivity_one recursive (env,_,ntypes,_ as ienv) hyps (_,i as ind) nargs lcnames indlc = let lparams = rel_context_length hyps in let nmr = rel_context_nhyps hyps in (* Checking the (strict) positivity of a constructor argument type [c] *) let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in (match weaker_noccur_between env n ntypes b with None -> failwith_non_pos_list n ntypes [b] | Some b -> check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d) | Rel k -> (try let (ra,rarg) = List.nth ra_env (k-1) in let largs = List.map (whd_betadeltaiota env) largs in let nmr1 = (match ra with Mrec _ -> compute_rec_par ienv hyps nmr largs | _ -> nmr) in if not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs else (nmr1,rarg) with Failure _ | Invalid_argument _ -> (nmr,mk_norec)) | Ind ind_kn -> (* If the inductive type being defined appears in a parameter, then we have a nested indtype *) if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec) else check_positive_nested ienv nmr (ind_kn, largs) | err -> if noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec) else failwith_non_pos_list n ntypes (x::largs) (* accesses to the environment are not factorised, but is it worth? *) and check_positive_nested (env,n,ntypes,ra_env as ienv) nmr ((mi,u), largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnpar = mib.mind_nparams_rec in let nonrecpar = mib.mind_nparams - auxnpar in let (lpar,auxlargs) = try List.chop auxnpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (* If the inductive appears in the args (non params) then the definition is not positive. *) if not (List.for_all (noccur_between n ntypes) auxlargs) then failwith_non_pos_list n ntypes auxlargs; (* We do not deal with imbricated mutual inductive types *) let auxntyp = mib.mind_ntypes in if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc auxntyp auxnpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),lpar) in (* Parameters expressed in env' *) let lpar' = List.map (lift auxntyp) lpar in let irecargs_nmr = (* fails if the inductive type occurs non positively *) (* with recursive parameters substituted *) Array.map (function c -> let c' = hnf_prod_applist env' c lpar' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in check_constructors ienv' false nmr c') auxlcvect in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0)) (* check the inductive types occur positively in the products of C, if check_head=true, also check the head corresponds to a constructor of the ith type *) and check_constructors ienv check_head nmr c = let rec check_constr_rec (env,n,ntypes,ra_env as ienv) nmr lrec c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in if not recursive && not (noccur_between n ntypes b) then raise (InductiveError BadEntry); let nmr',recarg = check_pos ienv nmr b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' nmr' (recarg::lrec) d | hd -> let () = if check_head then begin match hd with | Rel j when Int.equal j (n + ntypes - i - 1) -> check_correct_par ienv hyps (ntypes - i) largs | _ -> raise (IllFormedInd (LocalNotConstructor(hyps,nargs))) end else if not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs in (nmr, List.rev lrec) in check_constr_rec ienv nmr [] c in let irecargs_nmr = Array.map2 (fun id c -> let _,rawc = mind_extract_params lparams c in try check_constructors ienv true nmr rawc with IllFormedInd err -> explain_ind_err id (ntypes-i) env lparams c err) (Array.of_list lcnames) indlc in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr', mk_paths (Mrec ind) irecargs) let check_positivity kn env_ar params finite inds = let ntypes = Array.length inds in let recursive = finite != Decl_kinds.BiFinite in let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in let lra_ind = Array.rev_to_list rc in let lparams = rel_context_length params in let nmr = rel_context_nhyps params in let check_one i (_,lcnames,lc,(sign,_)) = let ra_env = List.init lparams (fun _ -> (Norec,mk_norec)) @ lra_ind in let ienv = (env_ar, 1+lparams, ntypes, ra_env) in let nargs = rel_context_nhyps sign - nmr in check_positivity_one recursive ienv params (kn,i) nargs lcnames lc in let irecargs_nmr = Array.mapi check_one inds in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',Rtree.mk_rec irecargs) (************************************************************************) (************************************************************************) (* Build the inductive packet *) (* Allowed eliminations *) let all_sorts = [InProp;InSet;InType] let small_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts is_smashed s = if not is_smashed then (** Naturally in the defined sort. If [s] is Prop, it must be small and unitary. Unsmashed, predicative Type and Set: all elimination allowed as well. *) all_sorts else match family_of_sort s with (* Type: all elimination allowed: above and below *) | InType -> all_sorts (* Smashed Set is necessarily impredicative: forbids large elimination *) | InSet -> small_sorts (* Smashed to Prop, no informative eliminations allowed *) | InProp -> logical_sorts (* Previous comment: *) (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type. *) (* -> this is now handled by is_smashed: *) (* - all_sorts in case of small, unitary Prop (not smashed) *) (* - logical_sorts in case of large, unitary Prop (smashed) *) let arity_conclusion = function | RegularArity (_, c, _) -> c | TemplateArity (_, s) -> mkType s let fold_inductive_blocks f = Array.fold_left (fun acc (_,_,lc,(arsign,ar)) -> f (Array.fold_left f acc lc) (it_mkProd_or_LetIn (arity_conclusion ar) arsign)) let used_section_variables env inds = let ids = fold_inductive_blocks (fun l c -> Id.Set.union (Environ.global_vars_set env c) l) Id.Set.empty inds in keep_hyps env ids let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) exception UndefinableExpansion (** From a rel context describing the constructor arguments, build an expansion function. The term built is expecting to be substituted first by a substitution of the form [params, x : ind params] *) let compute_projections ((kn, _ as ind), u as indu) n x nparamargs params mind_consnrealdecls mind_consnrealargs paramslet ctx = let mp, dp, l = repr_mind kn in (** We build a substitution smashing the lets in the record parameters so that typechecking projections requires just a substitution and not matching with a parameter context. *) let indty, paramsletsubst = let _, _, subst, inst = List.fold_right (fun (na, b, t) (i, j, subst, inst) -> match b with | None -> (i-1, j-1, mkRel i :: subst, mkRel j :: inst) | Some b -> (i, j-1, substl subst b :: subst, inst)) paramslet (nparamargs, List.length paramslet, [], []) in let subst = (* For the record parameter: *) mkRel 1 :: List.map (lift 1) subst in let ty = mkApp (mkIndU indu, CArray.rev_of_list inst) in ty, subst in let ci = let print_info = { ind_tags = []; cstr_tags = [|rel_context_tags ctx|]; style = LetStyle } in { ci_ind = ind; ci_npar = nparamargs; ci_cstr_ndecls = mind_consnrealdecls; ci_cstr_nargs = mind_consnrealargs; ci_pp_info = print_info } in let len = List.length ctx in let x = Name x in let compat_body ccl i = (* [ccl] is defined in context [params;x:indty] *) (* [ccl'] is defined in context [params;x:indty;x:indty] *) let ccl' = liftn 1 2 ccl in let p = mkLambda (x, lift 1 indty, ccl') in let branch = it_mkLambda_or_LetIn (mkRel (len - i)) ctx in let body = mkCase (ci, p, mkRel 1, [|lift 1 branch|]) in it_mkLambda_or_LetIn (mkLambda (x,indty,body)) params in let projections (na, b, t) (i, j, kns, pbs, subst, letsubst) = match b with | Some c -> (* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *) let c = liftn 1 j c in (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I |- c(params,proj1 x,..,projj x)] *) let c1 = substl subst c in (* From [params, x:I |- subst:field1,..,fieldj] to [params, x:I |- subst:field1,..,fieldj+1] where [subst] is represented with instance of field1 last *) let subst = c1 :: subst in (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *) let c2 = substl letsubst c in (* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)] to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *) let letsubst = c2 :: letsubst in (i, j+1, kns, pbs, subst, letsubst) | None -> match na with | Name id -> let kn = Constant.make1 (KerName.make mp dp (Label.of_id id)) in (* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *) let t = liftn 1 j t in (* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *) let projty = substl letsubst t in (* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)] to [params, x:I |- t(proj1 x,..,projj x)] *) let ty = substl subst t in let term = mkProj (Projection.make kn true, mkRel 1) in let fterm = mkProj (Projection.make kn false, mkRel 1) in let compat = compat_body ty (j - 1) in let etab = it_mkLambda_or_LetIn (mkLambda (x, indty, term)) params in let etat = it_mkProd_or_LetIn (mkProd (x, indty, ty)) params in let body = { proj_ind = fst ind; proj_npars = nparamargs; proj_arg = i; proj_type = projty; proj_eta = etab, etat; proj_body = compat } in (i + 1, j + 1, kn :: kns, body :: pbs, fterm :: subst, fterm :: letsubst) | Anonymous -> raise UndefinableExpansion in let (_, _, kns, pbs, subst, letsubst) = List.fold_right projections ctx (0, 1, [], [], [], paramsletsubst) in Array.of_list (List.rev kns), Array.of_list (List.rev pbs) let build_inductive env p prv ctx env_ar params kn isrecord isfinite inds nmr recargs = let ntypes = Array.length inds in (* Compute the set of used section variables *) let hyps = used_section_variables env inds in let nparamargs = rel_context_nhyps params in let nparamdecls = rel_context_length params in let subst, ctx = Univ.abstract_universes p ctx in let params = Vars.subst_univs_level_context subst params in let env_ar = let ctx = Environ.rel_context env_ar in let ctx' = Vars.subst_univs_level_context subst ctx in Environ.push_rel_context ctx' env in (* Check one inductive *) let build_one_packet (id,cnames,lc,(ar_sign,ar_kind)) recarg = (* Type of constructors in normal form *) let lc = Array.map (Vars.subst_univs_level_constr subst) lc in let splayed_lc = Array.map (dest_prod_assum env_ar) lc in let nf_lc = Array.map (fun (d,b) -> it_mkProd_or_LetIn b d) splayed_lc in let consnrealdecls = Array.map (fun (d,_) -> rel_context_length d - rel_context_length params) splayed_lc in let consnrealargs = Array.map (fun (d,_) -> rel_context_nhyps d - rel_context_nhyps params) splayed_lc in (* Elimination sorts *) let arkind,kelim = match ar_kind with | TemplateArity (paramlevs, lev) -> let ar = {template_param_levels = paramlevs; template_level = lev} in TemplateArity ar, all_sorts | RegularArity (info,ar,defs) -> let s = sort_of_univ defs in let kelim = allowed_sorts info s in let ar = RegularArity { mind_user_arity = Vars.subst_univs_level_constr subst ar; mind_sort = sort_of_univ (Univ.subst_univs_level_universe subst defs); } in ar, kelim in (* Assigning VM tags to constructors *) let nconst, nblock = ref 0, ref 0 in let transf num = let arity = List.length (dest_subterms recarg).(num) in if Int.equal arity 0 then let p = (!nconst, 0) in incr nconst; p else let p = (!nblock + 1, arity) in incr nblock; p (* les tag des constructeur constant commence a 0, les tag des constructeur non constant a 1 (0 => accumulator) *) in let rtbl = Array.init (List.length cnames) transf in (* Build the inductive packet *) { mind_typename = id; mind_arity = arkind; mind_arity_ctxt = Vars.subst_univs_level_context subst ar_sign; mind_nrealargs = rel_context_nhyps ar_sign - nparamargs; mind_nrealdecls = rel_context_length ar_sign - nparamdecls; mind_kelim = kelim; mind_consnames = Array.of_list cnames; mind_consnrealdecls = consnrealdecls; mind_consnrealargs = consnrealargs; mind_user_lc = lc; mind_nf_lc = nf_lc; mind_recargs = recarg; mind_nb_constant = !nconst; mind_nb_args = !nblock; mind_reloc_tbl = rtbl; } in let packets = Array.map2 build_one_packet inds recargs in let pkt = packets.(0) in let isrecord = match isrecord with | Some (Some rid) when pkt.mind_kelim == all_sorts && Array.length pkt.mind_consnames == 1 && pkt.mind_consnrealargs.(0) > 0 -> (** The elimination criterion ensures that all projections can be defined. *) let u = if p then subst_univs_level_instance subst (Univ.UContext.instance ctx) else Univ.Instance.empty in let indsp = ((kn, 0), u) in let rctx, indty = decompose_prod_assum (subst1 (mkIndU indsp) pkt.mind_nf_lc.(0)) in (try let fields, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in let kns, projs = compute_projections indsp pkt.mind_typename rid nparamargs params pkt.mind_consnrealdecls pkt.mind_consnrealargs paramslet fields in Some (Some (rid, kns, projs)) with UndefinableExpansion -> Some None) | Some _ -> Some None | None -> None in (* Build the mutual inductive *) { mind_record = isrecord; mind_ntypes = ntypes; mind_finite = isfinite; mind_hyps = hyps; mind_nparams = nparamargs; mind_nparams_rec = nmr; mind_params_ctxt = params; mind_packets = packets; mind_polymorphic = p; mind_universes = ctx; mind_private = prv; } (************************************************************************) (************************************************************************) let check_inductive env kn mie = (* First type-check the inductive definition *) let (env_ar, env_ar_par, params, inds) = typecheck_inductive env mie in (* Then check positivity conditions *) let (nmr,recargs) = check_positivity kn env_ar_par params mie.mind_entry_finite inds in (* Build the inductive packets *) build_inductive env mie.mind_entry_polymorphic mie.mind_entry_private mie.mind_entry_universes env_ar params kn mie.mind_entry_record mie.mind_entry_finite inds nmr recargs