(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* idset | c::cl -> if Idset.mem c idset then raise (InductiveError (SameNamesConstructors (id,c))) else check (Idset.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Idset.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names id cstset cl in check (Idset.add id indset) cstset' inds in check Idset.empty Idset.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) let mind_check_arities env mie = let check_arity id c = if not (is_arity env c) then raise (InductiveError (NotAnArity id)) in List.iter (fun {mind_entry_typename=id; mind_entry_arity=ar} -> check_arity id ar) mie.mind_entry_inds (***********************************************************************) (***********************************************************************) (* Typing the arities and constructor types *) let is_info_arity env c = match dest_arity env c with | (_,Prop Null) -> false | (_,Prop Pos) -> true | (_,Type _) -> true let is_info_type env t = let s = t.utj_type in if s = mk_Set then true else if s = mk_Prop then false else try is_info_arity env t.utj_val with UserError _ -> true (* [infos] is a sequence of pair [islogic,issmall] for each type in the product of a constructor or arity *) let is_small infos = List.for_all (fun (logic,small) -> small) infos let is_logic_constr infos = List.for_all (fun (logic,small) -> logic) infos let is_logic_arity infos = List.for_all (fun (logic,small) -> logic || small) infos (* An inductive definition is a "unit" if it has only one constructor and that all arguments expected by this constructor are logical, this is the case for equality, conjonction of logical properties *) let is_unit constrsinfos = match constrsinfos with (* One info = One constructor *) | [constrinfos] -> is_logic_constr constrinfos (* CP : relax this constraint which was related to extraction && is_logic_arity arinfos *) | [] -> (* type without constructors *) true | _ -> false let rec infos_and_sort env t = match kind_of_term t with | Prod (name,c1,c2) -> let (varj,_) = infer_type env c1 in let env1 = Environ.push_rel (name,None,varj.utj_val) env in let logic = not (is_info_type env varj) in let small = Term.is_small varj.utj_type in (logic,small) :: (infos_and_sort env1 c2) | Cast (c,_) -> infos_and_sort env c | _ -> [] let small_unit constrsinfos = let issmall = List.for_all is_small constrsinfos and isunit = is_unit constrsinfos in issmall, isunit (* This (re)computes informations relevant to extraction and the sort of an arity or type constructor; we do not to recompute universes constraints *) (* [smax] is the max of the sorts of the products of the constructor type *) let enforce_type_constructor env arsort smax cst = match smax, arsort with | Type uc, Type ua -> enforce_geq ua uc cst | Type uc, Prop Pos when engagement env <> Some ImpredicativeSet -> error "Large non-propositional inductive types must be in Type" | _,_ -> cst let type_one_constructor env_ar_par params arsort c = let infos = infos_and_sort env_ar_par c in (* Each constructor is typed-checked here *) let (j,cst) = infer_type env_ar_par c in let full_cstr_type = it_mkProd_or_LetIn j.utj_val params in (* If the arity is at some level Type arsort, then the sort of the constructor must be below arsort; here we consider constructors with the global parameters (which add a priori more constraints on their sort) *) let cst2 = enforce_type_constructor env_ar_par arsort j.utj_type cst in (infos, full_cstr_type, cst2) let infer_constructor_packet env_ar params arsort vc = let env_ar_par = push_rel_context params env_ar in let (constrsinfos,jlc,cst) = List.fold_right (fun c (infosl,l,cst) -> let (infos,ct,cst') = type_one_constructor env_ar_par params arsort c in (infos::infosl,ct::l, Constraint.union cst cst')) vc ([],[],Constraint.empty) in let vc' = Array.of_list jlc in let issmall,isunit = small_unit constrsinfos in (issmall,isunit,vc', cst) (* Type-check an inductive definition. Does not check positivity conditions. *) let typecheck_inductive env mie = if mie.mind_entry_inds = [] then anomaly "empty inductive types declaration"; (* Check unicity of names *) mind_check_names mie; mind_check_arities env mie; (* We first type params and arity of each inductive definition *) (* This allows to build the environment of arities and to share *) (* the set of constraints *) let cst, arities, rev_params_arity_list = List.fold_left (fun (cst,arities,l) ind -> (* Params are typed-checked here *) let params = ind.mind_entry_params in let env_params, params, cst1 = infer_local_decls env params in (* Arities (without params) are typed-checked here *) let arity, cst2 = infer_type env_params ind.mind_entry_arity in (* We do not need to generate the universe of full_arity; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let id = ind.mind_entry_typename in let full_arity = it_mkProd_or_LetIn arity.utj_val params in Constraint.union cst (Constraint.union cst1 cst2), Sign.add_rel_decl (Name id, None, full_arity) arities, (params, id, full_arity, arity.utj_val)::l) (Constraint.empty,empty_rel_context,[]) mie.mind_entry_inds in let env_arities = push_rel_context arities env in let params_arity_list = List.rev rev_params_arity_list in (* Now, we type the constructors (without params) *) let inds,cst = List.fold_right2 (fun ind (params,id,full_arity,short_arity) (inds,cst) -> let (_,arsort) = dest_arity env full_arity in let lc = ind.mind_entry_lc in let (issmall,isunit,lc',cst') = infer_constructor_packet env_arities params arsort lc in let consnames = ind.mind_entry_consnames in let ind' = (params,id,full_arity,consnames,issmall,isunit,lc') in (ind'::inds, Constraint.union cst cst')) mie.mind_entry_inds params_arity_list ([],cst) in (env_arities, Array.of_list inds, cst) (***********************************************************************) (***********************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor | LocalNonPar of int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err ntyp env0 nbpar c err = let (lpar,c') = mind_extract_params nbpar c in let env = push_rel_context lpar env0 in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',mkRel (kt+nbpar)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',mkRel (kt+nbpar)))) | LocalNotConstructor -> raise (InductiveError (NotConstructor (env,c',mkRel (ntyp+nbpar)))) | LocalNonPar (n,l) -> raise (InductiveError (NonPar (env,c',n,mkRel (nbpar-n+1), mkRel (l+nbpar)))) let failwith_non_pos_vect n ntypes v = for i = 0 to Array.length v - 1 do for k = n to n + ntypes - 1 do if not (noccurn k v.(i)) then raise (IllFormedInd (LocalNonPos (k-n+1))) done done; anomaly "failwith_non_pos_vect: some k in [n;n+ntypes-1] should occur in v" (* Check the inductive type is called with the expected parameters *) let check_correct_par (env,n,ntypes,_) hyps l largs = let nparams = rel_context_nhyps hyps in let largs = Array.of_list largs in if Array.length largs < nparams then raise (IllFormedInd (LocalNotEnoughArgs l)); let (lpar,largs') = array_chop nparams largs in let nhyps = List.length hyps in let rec check k index = function | [] -> () | (_,Some _,_)::hyps -> check k (index+1) hyps | _::hyps -> match kind_of_term (whd_betadeltaiota env lpar.(k)) with | Rel w when w = index -> check (k-1) (index+1) hyps | _ -> raise (IllFormedInd (LocalNonPar (k+1,l))) in check (nparams-1) (n-nhyps) hyps; if not (array_for_all (noccur_between n ntypes) largs') then failwith_non_pos_vect n ntypes largs' (* This removes global parameters of the inductive types in lc (for nested inductive types only ) *) let abstract_mind_lc env ntyps npars lc = if npars = 0 then lc else let make_abs = list_tabulate (function i -> lambda_implicit_lift npars (mkRel (i+1))) ntyps in Array.map (substl make_abs) lc let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (x,None,a) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) (mi,lpar) = let auxntyp = 1 in let env' = push_rel (Anonymous,None, hnf_prod_applist env (type_of_inductive env mi) lpar) env in let ra_env' = (Imbr mi,Rtree.mk_param 0) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') (* The recursive function that checks positivity and builds the list of recursive arguments *) let check_positivity_one (env, _,ntypes,_ as ienv) hyps i indlc = let nparams = rel_context_length hyps in (* check the inductive types occur positively in [c] *) let rec check_pos (env, n, ntypes, ra_env as ienv) c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> assert (largs = []); if not (noccur_between n ntypes b) then raise (IllFormedInd (LocalNonPos n)); check_pos (ienv_push_var ienv (na, b, mk_norec)) d | Rel k -> let (ra,rarg) = try List.nth ra_env (k-1) with Failure _ | Invalid_argument _ -> (Norec,mk_norec) in (match ra with Mrec _ -> check_correct_par ienv hyps (k-n+1) largs | _ -> if not (List.for_all (noccur_between n ntypes) largs) then raise (IllFormedInd (LocalNonPos n))); rarg | Ind ind_kn -> (* If the inductive type being defined appears in a parameter, then we have an imbricated type *) if List.for_all (noccur_between n ntypes) largs then mk_norec else check_positive_imbr ienv (ind_kn, largs) | err -> if noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs then mk_norec else raise (IllFormedInd (LocalNonPos n)) (* accesses to the environment are not factorised, but does it worth it? *) and check_positive_imbr (env,n,ntypes,ra_env as ienv) (mi, largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnpar = mip.mind_nparams in let (lpar,auxlargs) = try list_chop auxnpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (* If the inductive appears in the args (non params) then the definition is not positive. *) if not (List.for_all (noccur_between n ntypes) auxlargs) then raise (IllFormedInd (LocalNonPos n)); (* We do not deal with imbricated mutual inductive types *) let auxntyp = mib.mind_ntypes in if auxntyp <> 1 then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc env auxntyp auxnpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv (mi,lpar) in (* Parameters expressed in env' *) let lpar' = List.map (lift auxntyp) lpar in let irecargs = (* fails if the inductive type occurs non positively *) (* when substituted *) Array.map (function c -> let c' = hnf_prod_applist env' c lpar' in check_constructors ienv' false c') auxlcvect in (Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0) (* check the inductive types occur positively in the products of C, if check_head=true, also check the head corresponds to a constructor of the ith type *) and check_constructors ienv check_head c = let rec check_constr_rec (env,n,ntypes,ra_env as ienv) lrec c = let x,largs = decompose_app (whd_betadeltaiota env c) in match kind_of_term x with | Prod (na,b,d) -> assert (largs = []); let recarg = check_pos ienv b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' (recarg::lrec) d | hd -> if check_head then if hd = Rel (n+ntypes-i-1) then check_correct_par ienv hyps (ntypes-i) largs else raise (IllFormedInd LocalNotConstructor) else if not (List.for_all (noccur_between n ntypes) largs) then raise (IllFormedInd (LocalNonPos n)); List.rev lrec in check_constr_rec ienv [] c in mk_paths (Mrec i) (Array.map (fun c -> let c = body_of_type c in let sign, rawc = mind_extract_params nparams c in let env' = push_rel_context sign env in try check_constructors ienv true rawc with IllFormedInd err -> explain_ind_err (ntypes-i) env nparams c err) indlc) let check_positivity env_ar inds = let ntypes = Array.length inds in let lra_ind = List.rev (list_tabulate (fun j -> (Mrec j, Rtree.mk_param j)) ntypes) in let check_one i (params,_,_,_,_,_,lc) = let nparams = rel_context_length params in let ra_env = list_tabulate (fun _ -> (Norec,mk_norec)) nparams @ lra_ind in let ienv = (env_ar, 1+nparams, ntypes, ra_env) in check_positivity_one ienv params i lc in Rtree.mk_rec (Array.mapi check_one inds) (***********************************************************************) (***********************************************************************) (* Build the inductive packet *) (* Elimination sorts *) let is_recursive = Rtree.is_infinite (* let rec one_is_rec rvec = List.exists (function Mrec(i) -> List.mem i listind | Imbr(_,lvec) -> array_exists one_is_rec lvec | Norec -> false) rvec in array_exists one_is_rec *) let all_sorts = [InProp;InSet;InType] let impredicative_sorts = [InProp;InSet] let logical_sorts = [InProp] let allowed_sorts issmall isunit = function | Type _ -> all_sorts | Prop Pos -> if issmall then all_sorts else impredicative_sorts | Prop Null -> (* Added InType which is derivable :when the type is unit and small *) if isunit then if issmall then all_sorts else impredicative_sorts else logical_sorts let build_inductive env env_ar finite inds recargs cst = let ntypes = Array.length inds in (* Compute the set of used section variables *) let ids = Array.fold_left (fun acc (_,_,ar,_,_,_,lc) -> Idset.union (Environ.global_vars_set env (body_of_type ar)) (Array.fold_left (fun acc c -> Idset.union (global_vars_set env (body_of_type c)) acc) acc lc)) Idset.empty inds in let hyps = keep_hyps env ids in (* Check one inductive *) let build_one_packet (params,id,ar,cnames,issmall,isunit,lc) recarg = (* Arity in normal form *) let nparamargs = rel_context_nhyps params in let (ar_sign,ar_sort) = dest_arity env ar in let nf_ar = if isArity (body_of_type ar) then ar else it_mkProd_or_LetIn (mkSort ar_sort) ar_sign in (* Type of constructors in normal form *) let splayed_lc = Array.map (dest_prod_assum env_ar) lc in let nf_lc = array_map2 (fun (d,b) c -> it_mkProd_or_LetIn b d) splayed_lc lc in let nf_lc = if nf_lc = lc then lc else nf_lc in (* Elimination sorts *) let isunit = isunit && ntypes = 1 && (not (is_recursive recargs.(0))) in let kelim = allowed_sorts issmall isunit ar_sort in (* Build the inductive packet *) { mind_typename = id; mind_nparams = nparamargs; mind_params_ctxt = params; mind_user_arity = ar; mind_nf_arity = nf_ar; mind_nrealargs = rel_context_nhyps ar_sign - nparamargs; mind_sort = ar_sort; mind_kelim = kelim; mind_consnames = Array.of_list cnames; mind_user_lc = lc; mind_nf_lc = nf_lc; mind_recargs = recarg; } in let packets = array_map2 build_one_packet inds recargs in (* Build the mutual inductive *) { mind_ntypes = ntypes; mind_finite = finite; mind_hyps = hyps; mind_packets = packets; mind_constraints = cst; mind_equiv = None; } (***********************************************************************) (***********************************************************************) let check_inductive env mie = (* First type-check the inductive definition *) let (env_arities, inds, cst) = typecheck_inductive env mie in (* Then check positivity conditions *) let recargs = check_positivity env_arities inds in (* Build the inductive packets *) build_inductive env env_arities mie.mind_entry_finite inds recargs cst