(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* true | _ -> false with Not_found -> false let nb_rel env = env.env_nb_rel let push_rel = push_rel let push_rel_context ctxt x = Sign.fold_rel_context push_rel ctxt ~init:x let push_rec_types (lna,typarray,_) env = let ctxt = array_map2_i (fun i na t -> (na, None, lift i t)) lna typarray in Array.fold_left (fun e assum -> push_rel assum e) env ctxt let reset_rel_context env = { env with env_rel_context = empty_rel_context; env_rel_val = []; env_nb_rel = 0 } let fold_rel_context f env ~init = let rec fold_right env = match env.env_rel_context with | [] -> init | rd::rc -> let env = { env with env_rel_context = rc; env_rel_val = List.tl env.env_rel_val; env_nb_rel = env.env_nb_rel - 1 } in f env rd (fold_right env) in fold_right env (* Named context *) let named_context_of_val = fst (* [map_named_val f ctxt] apply [f] to the body and the type of each declarations. *** /!\ *** [f t] should be convertible with t *) let map_named_val f (ctxt,ctxtv) = let ctxt = List.map (fun (id,body,typ) -> (id, option_map f body, f typ)) ctxt in (ctxt,ctxtv) let empty_named_context = empty_named_context let push_named = push_named let push_named_context_val = push_named_context_val let val_of_named_context ctxt = List.fold_right push_named_context_val ctxt empty_named_context_val let lookup_named id env = Sign.lookup_named id env.env_named_context let lookup_named_val id (ctxt,_) = Sign.lookup_named id ctxt let eq_named_context_val c1 c2 = c1 == c2 || named_context_of_val c1 = named_context_of_val c2 (* A local const is evaluable if it is defined *) let named_type id env = let (_,_,t) = lookup_named id env in t let named_body id env = let (_,b,_) = lookup_named id env in b let evaluable_named id env = try match named_body id env with |Some _ -> true | _ -> false with Not_found -> false let reset_with_named_context (ctxt,ctxtv) env = { env with env_named_context = ctxt; env_named_vals = ctxtv; env_rel_context = empty_rel_context; env_rel_val = []; env_nb_rel = 0 } let reset_context = reset_with_named_context empty_named_context_val let fold_named_context f env ~init = let rec fold_right env = match env.env_named_context with | [] -> init | d::ctxt -> let env = reset_with_named_context (ctxt,List.tl env.env_named_vals) env in f env d (fold_right env) in fold_right env let fold_named_context_reverse f ~init env = Sign.fold_named_context_reverse f ~init:init (named_context env) (* Global constants *) let lookup_constant = lookup_constant let add_constant kn cs env = let new_constants = Cmap.add kn (cs,ref None) env.env_globals.env_constants in let new_globals = { env.env_globals with env_constants = new_constants } in { env with env_globals = new_globals } (* constant_type gives the type of a constant *) let constant_type env kn = let cb = lookup_constant kn env in cb.const_type type const_evaluation_result = NoBody | Opaque exception NotEvaluableConst of const_evaluation_result let constant_value env kn = let cb = lookup_constant kn env in if cb.const_opaque then raise (NotEvaluableConst Opaque); match cb.const_body with | Some l_body -> Declarations.force l_body | None -> raise (NotEvaluableConst NoBody) let constant_opt_value env cst = try Some (constant_value env cst) with NotEvaluableConst _ -> None (* A global const is evaluable if it is defined and not opaque *) let evaluable_constant cst env = try let _ = constant_value env cst in true with Not_found | NotEvaluableConst _ -> false (* Mutual Inductives *) let lookup_mind = lookup_mind let scrape_mind = scrape_mind let add_mind kn mib env = let new_inds = KNmap.add kn mib env.env_globals.env_inductives in let new_globals = { env.env_globals with env_inductives = new_inds } in { env with env_globals = new_globals } (* Universe constraints *) let set_universes g env = if env.env_stratification.env_universes == g then env else { env with env_stratification = { env.env_stratification with env_universes = g } } let add_constraints c env = if c == Constraint.empty then env else let s = env.env_stratification in { env with env_stratification = { s with env_universes = merge_constraints c s.env_universes } } let set_engagement c env = (* Unsafe *) { env with env_stratification = { env.env_stratification with env_engagement = Some c } } (* Lookup of section variables *) let lookup_constant_variables c env = let cmap = lookup_constant c env in Sign.vars_of_named_context cmap.const_hyps let lookup_inductive_variables (kn,i) env = let mis = lookup_mind kn env in Sign.vars_of_named_context mis.mind_hyps let lookup_constructor_variables (ind,_) env = lookup_inductive_variables ind env (* Returns the list of global variables in a term *) let vars_of_global env constr = match kind_of_term constr with Var id -> [id] | Const kn -> lookup_constant_variables kn env | Ind ind -> lookup_inductive_variables ind env | Construct cstr -> lookup_constructor_variables cstr env | _ -> [] let global_vars_set env constr = let rec filtrec acc c = let vl = vars_of_global env c in let acc = List.fold_right Idset.add vl acc in fold_constr filtrec acc c in filtrec Idset.empty constr (* [keep_hyps env ids] keeps the part of the section context of [env] which contains the variables of the set [ids], and recursively the variables contained in the types of the needed variables. *) let keep_hyps env needed = let really_needed = Sign.fold_named_context_reverse (fun need (id,copt,t) -> if Idset.mem id need then let globc = match copt with | None -> Idset.empty | Some c -> global_vars_set env c in Idset.union (global_vars_set env t) (Idset.union globc need) else need) ~init:needed (named_context env) in Sign.fold_named_context (fun (id,_,_ as d) nsign -> if Idset.mem id really_needed then add_named_decl d nsign else nsign) (named_context env) ~init:empty_named_context (* Modules *) let add_modtype ln mtb env = let new_modtypes = KNmap.add ln mtb env.env_globals.env_modtypes in let new_globals = { env.env_globals with env_modtypes = new_modtypes } in { env with env_globals = new_globals } let shallow_add_module mp mb env = let new_mods = MPmap.add mp mb env.env_globals.env_modules in let new_globals = { env.env_globals with env_modules = new_mods } in { env with env_globals = new_globals } let lookup_module mp env = MPmap.find mp env.env_globals.env_modules let lookup_modtype ln env = KNmap.find ln env.env_globals.env_modtypes (*s Judgments. *) type unsafe_judgment = { uj_val : constr; uj_type : types } let make_judge v tj = { uj_val = v; uj_type = tj } let j_val j = j.uj_val let j_type j = j.uj_type type unsafe_type_judgment = { utj_val : constr; utj_type : sorts } (*s Compilation of global declaration *) let compile_constant_body = Cbytegen.compile_constant_body exception Hyp_not_found let rec apply_to_hyp (ctxt,vals) id f = let rec aux rtail ctxt vals = match ctxt, vals with | (idc,c,ct as d)::ctxt, v::vals -> if idc = id then (f ctxt d rtail)::ctxt, v::vals else let ctxt',vals' = aux (d::rtail) ctxt vals in d::ctxt', v::vals' | [],[] -> raise Hyp_not_found | _, _ -> assert false in aux [] ctxt vals let rec apply_to_hyp_and_dependent_on (ctxt,vals) id f g = let rec aux ctxt vals = match ctxt,vals with | (idc,c,ct as d)::ctxt, v::vals -> if idc = id then let sign = ctxt,vals in push_named_context_val (f d sign) sign else let (ctxt,vals as sign) = aux ctxt vals in push_named_context_val (g d sign) sign | [],[] -> raise Hyp_not_found | _,_ -> assert false in aux ctxt vals let insert_after_hyp (ctxt,vals) id d check = let rec aux ctxt vals = match ctxt, vals with | (idc,c,ct)::ctxt', v::vals' -> if idc = id then begin check ctxt; push_named_context_val d (ctxt,vals) end else let ctxt,vals = aux ctxt vals in d::ctxt, v::vals | [],[] -> raise Hyp_not_found | _, _ -> assert false in aux ctxt vals (* To be used in Logic.clear_hyps *) let remove_hyps ids check_context check_value (ctxt, vals) = let ctxt,vals,rmv = List.fold_right2 (fun (id,_,_ as d) (id',v) (ctxt,vals,rmv) -> if List.mem id ids then (ctxt,vals,id::rmv) else let nd = check_context d in let nv = check_value v in (nd::ctxt,(id',nv)::vals,rmv)) ctxt vals ([],[],[]) in ((ctxt,vals),rmv) (*spiwack: the following functions assemble the pieces of the retroknowledge note that the "consistent" register function is available in the module Safetyping, Environ only synchronizes the proactive and the reactive parts*) open Retroknowledge (* lifting of the "get" functions works also for "mem"*) let retroknowledge f env = f env.retroknowledge let registered env field = retroknowledge mem env field (* spiwack: this unregistration function is not in operation yet. It should not be used *) (* this unregistration function assumes that no "constr" can hold two different places in the retroknowledge. There is no reason why it shouldn't be true, but in case someone needs it, remember to add special branches to the unregister function *) let unregister env field = match field with | KInt31 (_,Int31Type) -> (*there is only one matching kind due to the fact that Environ.env is abstract, and that the only function which add elements to the retroknowledge is Environ.register which enforces this shape *) (match retroknowledge find env field with | Ind i31t -> let i31c = Construct (i31t, 1) in {env with retroknowledge = remove (retroknowledge clear_info env i31c) field} | _ -> assert false) |_ -> {env with retroknowledge = try remove (retroknowledge clear_info env (retroknowledge find env field)) field with Not_found -> retroknowledge remove env field} (* the Environ.register function syncrhonizes the proactive and reactive retroknowledge. *) let register = (* subfunction used for static decompilation of int31 (after a vm_compute, see pretyping/vnorm.ml for more information) *) let constr_of_int31 = let nth_digit_plus_one i n = (* calculates the nth (starting with 0) digit of i and adds 1 to it (nth_digit_plus_one 1 3 = 2) *) if (land) i ((lsl) 1 n) = 0 then 1 else 2 in fun ind -> fun digit_ind -> fun tag -> let array_of_int i = Array.init 31 (fun n -> mkConstruct (digit_ind, nth_digit_plus_one i (30-n))) in mkApp(mkConstruct(ind, 1), array_of_int tag) in (* subfunction which adds the information bound to the constructor of the int31 type to the reactive retroknowledge *) let add_int31c retroknowledge c = let rk = add_vm_constant_static_info retroknowledge c Cbytegen.compile_structured_int31 in add_vm_constant_dynamic_info rk c Cbytegen.dynamic_int31_compilation in (* subfunction which adds the compiling information of an int31 operation which has a specific vm instruction (associates it to the name of the coq definition in the reactive retroknowledge) *) let add_int31_op retroknowledge v n op kn = add_vm_compiling_info retroknowledge v (Cbytegen.op_compilation n op kn) in fun env field value -> (* subfunction which shortens the (very often use) registration of binary operators to the reactive retroknowledge. *) let add_int31_binop_from_const op = match value with | Const kn -> retroknowledge add_int31_op env value 2 op kn | _ -> anomaly "Environ.register: should be a constant" in let add_int31_unop_from_const op = match value with | Const kn -> retroknowledge add_int31_op env value 1 op kn | _ -> anomaly "Environ.register: should be a constant" in (* subfunction which completes the function constr_of_int31 above by performing the actual retroknowledge operations *) let add_int31_decompilation_from_type rk = (* invariant : the type of bits is registered, otherwise the function would raise Not_found. The invariant is enforced in safe_typing.ml *) match field with | KInt31 (grp, Int31Type) -> (match Retroknowledge.find rk (KInt31 (grp,Int31Bits)) with | Ind i31bit_type -> (match value with | Ind i31t -> Retroknowledge.add_vm_decompile_constant_info rk value (constr_of_int31 i31t i31bit_type) | _ -> anomaly "Environ.register: should be an inductive type") | _ -> anomaly "Environ.register: Int31Bits should be an inductive type") | _ -> anomaly "Environ.register: add_int31_decompilation_from_type called with an abnormal field" in {env with retroknowledge = let retroknowledge_with_reactive_info = match field with | KInt31 (_, Int31Type) -> let i31c = match value with | Ind i31t -> (Construct (i31t, 1)) | _ -> anomaly "Environ.register: should be an inductive type" in add_int31_decompilation_from_type (add_vm_before_match_info (retroknowledge add_int31c env i31c) value Cbytegen.int31_escape_before_match) | KInt31 (_, Int31Plus) -> add_int31_binop_from_const Cbytecodes.Kaddint31 | KInt31 (_, Int31PlusC) -> add_int31_binop_from_const Cbytecodes.Kaddcint31 | KInt31 (_, Int31PlusCarryC) -> add_int31_binop_from_const Cbytecodes.Kaddcarrycint31 | KInt31 (_, Int31Minus) -> add_int31_binop_from_const Cbytecodes.Ksubint31 | KInt31 (_, Int31MinusC) -> add_int31_binop_from_const Cbytecodes.Ksubcint31 | KInt31 (_, Int31MinusCarryC) -> add_int31_binop_from_const Cbytecodes.Ksubcarrycint31 | KInt31 (_, Int31Times) -> add_int31_binop_from_const Cbytecodes.Kmulint31 | KInt31 (_, Int31TimesC) -> add_int31_binop_from_const Cbytecodes.Kmulcint31 | KInt31 (_, Int31Div21) -> (* this is a ternary operation *) (match value with | Const kn -> retroknowledge add_int31_op env value 3 Cbytecodes.Kdiv21int31 kn | _ -> anomaly "Environ.register: should be a constant") | KInt31 (_, Int31Div) -> add_int31_binop_from_const Cbytecodes.Kdivint31 | KInt31 (_, Int31AddMulDiv) -> (* this is a ternary operation *) (match value with | Const kn -> retroknowledge add_int31_op env value 3 Cbytecodes.Kaddmuldivint31 kn | _ -> anomaly "Environ.register: should be a constant") | KInt31 (_, Int31Compare) -> add_int31_binop_from_const Cbytecodes.Kcompareint31 | KInt31 (_, Int31Head0) -> add_int31_unop_from_const Cbytecodes.Khead0int31 | KInt31 (_, Int31Tail0) -> add_int31_unop_from_const Cbytecodes.Ktail0int31 | _ -> env.retroknowledge in Retroknowledge.add_field retroknowledge_with_reactive_info field value } (* spiwack: the following definitions are used by the function needed_assumption which gives as an output the set of all axioms and sections variables on which a given term depends in a context (expectingly the Global context) *) type assumption = | Variable of identifier*constr | Axiom of constant*constr module OrderedAssumption = struct type t = assumption let compare = compare end module AssumptionSet = Set.Make (OrderedAssumption) (* definition for redability purposes *) let ( ** ) s1 s2 = AssumptionSet.union s1 s2 let rec needed_assumptions t env = (* goes recursively into the terms to see if it depends on assumptions the 3 important cases are : Var _ which means that the term refers to a section variable or a "Let" definition, Rel _ which means the term is a variable which has been bound earlier by a Lambda or a Prod (returns [] ) Const _ where we need to first unfold the constant and return the needed assumptions of its body in the environnement *) match kind_of_term t with | Var id -> (* a var can be either a variable, or a "Let" definition.*) (match named_body id env with | None -> AssumptionSet.singleton (Variable (id,named_type id env)) | Some bdy -> needed_assumptions bdy env) | Meta _ | Evar _ -> assert false | Cast (e1,_,e2) | Prod (_,e1,e2) | Lambda (_,e1,e2) -> (needed_assumptions e1 env)**(needed_assumptions e2 env) | LetIn (_,e1,e2,e3) ->(needed_assumptions e1 env)** (needed_assumptions e2 env)** (needed_assumptions e3 env) | App (e1, e_array) -> (needed_assumptions e1 env)** (Array.fold_right (fun e -> fun s -> (needed_assumptions e env)**s) e_array AssumptionSet.empty) | Case (_,e1,e2,e_array) -> (needed_assumptions e1 env)** (needed_assumptions e2 env)** (Array.fold_right (fun e -> fun s -> (needed_assumptions e env)**s) e_array AssumptionSet.empty) | Fix (_,(_, e1_array, e2_array)) | CoFix (_,(_,e1_array, e2_array)) -> Array.fold_right (fun e -> fun s -> (needed_assumptions e env)**s) e1_array (Array.fold_right (fun e -> fun s -> (needed_assumptions e env)**s) e2_array AssumptionSet.empty) | Const kn -> let cb = lookup_constant kn env in (match cb.Declarations.const_body with | None -> let ctype = match cb.Declarations.const_type with | PolymorphicArity (ctx,a) -> mkArity (ctx, Type a.poly_level) | NonPolymorphicType t -> t in AssumptionSet.singleton (Axiom (kn,ctype)) | Some body -> needed_assumptions (Declarations.force body) env) | _ -> AssumptionSet.empty (* closed atomic types + rel *) (* /spiwack *)