(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* r | Imbr (kn,i) -> let kn' = subst_kn sub kn in if kn==kn' then r else Imbr (kn',i) type wf_paths = recarg Rtree.t let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) let dest_subterms p = let (_,cstrs) = Rtree.dest_node p in Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let recarg_length p j = let (_,cstrs) = Rtree.dest_node p in Array.length (snd (Rtree.dest_node cstrs.(j-1))) let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p (**********************************************************************) (* Representation of mutual inductive types in the kernel *) (* Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn *) type one_inductive_body = { (* Primitive datas *) (* Name of the type: [Ii] *) mind_typename : identifier; (* Arity of [Ii] with parameters: [forall params, Ui] *) mind_user_arity : types; (* Names of the constructors: [cij] *) mind_consnames : identifier array; (* Types of the constructors with parameters: [forall params, Tij], where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Un *) mind_user_lc : types array; (* Derived datas *) (* Head normalized arity so that the conclusion is a sort *) mind_nf_arity : types; (* Number of expected real arguments of the type (no let, no params) *) mind_nrealargs : int; (* Conclusion of the arity *) mind_sort : sorts; (* List of allowed elimination sorts *) mind_kelim : sorts_family list; (* Head normalized constructor types so that their conclusion is atomic *) mind_nf_lc : types array; (* Length of the signature of the constructors (with let, w/o params) *) mind_consnrealdecls : int array; (* Signature of recursive arguments in the constructors *) mind_recargs : wf_paths; (* Datas for bytecode compilation *) (* number of constant constructor *) mind_nb_constant : int; (* number of no constant constructor *) mind_nb_args : int; mind_reloc_tbl : Cbytecodes.reloc_table; } type mutual_inductive_body = { (* The component of the mutual inductive block *) mind_packets : one_inductive_body array; (* Whether the inductive type has been declared as a record *) mind_record : bool; (* Whether the type is inductive or coinductive *) mind_finite : bool; (* Number of types in the block *) mind_ntypes : int; (* Section hypotheses on which the block depends *) mind_hyps : section_context; (* Number of expected parameters *) mind_nparams : int; (* Number of recursively uniform (i.e. ordinary) parameters *) mind_nparams_rec : int; (* The context of parameters (includes let-in declaration) *) mind_params_ctxt : rel_context; (* Universes constraints enforced by the inductive declaration *) mind_constraints : constraints; (* Source of the inductive block when aliased in a module *) mind_equiv : kernel_name option } (* TODO: should be changed to non-coping after Term.subst_mps *) let subst_const_body sub cb = { const_hyps = (assert (cb.const_hyps=[]); []); const_body = option_map (subst_constr_subst sub) cb.const_body; const_type = type_app (subst_mps sub) cb.const_type; const_body_code = Cemitcodes.subst_to_patch_subst sub cb.const_body_code; (*const_type_code = Cemitcodes.subst_to_patch sub cb.const_type_code;*) const_constraints = cb.const_constraints; const_opaque = cb.const_opaque } let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_typename = mbp.mind_typename; mind_nf_lc = array_smartmap (type_app (subst_mps sub)) mbp.mind_nf_lc; mind_nf_arity = type_app (subst_mps sub) mbp.mind_nf_arity; mind_user_lc = array_smartmap (type_app (subst_mps sub)) mbp.mind_user_lc; mind_user_arity = type_app (subst_mps sub) mbp.mind_user_arity; mind_sort = mbp.mind_sort; mind_nrealargs = mbp.mind_nrealargs; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind sub mib = { mind_record = mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = (assert (mib.mind_hyps=[]); []) ; mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = map_rel_context (subst_mps sub) mib.mind_params_ctxt; mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ; mind_constraints = mib.mind_constraints ; mind_equiv = option_map (subst_kn sub) mib.mind_equiv } (*s Modules: signature component specifications, module types, and module declarations *) type specification_body = | SPBconst of constant_body | SPBmind of mutual_inductive_body | SPBmodule of module_specification_body | SPBmodtype of module_type_body and module_signature_body = (label * specification_body) list and module_type_body = | MTBident of kernel_name | MTBfunsig of mod_bound_id * module_type_body * module_type_body | MTBsig of mod_self_id * module_signature_body and module_specification_body = { msb_modtype : module_type_body; msb_equiv : module_path option; msb_constraints : constraints } type structure_elem_body = | SEBconst of constant_body | SEBmind of mutual_inductive_body | SEBmodule of module_body | SEBmodtype of module_type_body and module_structure_body = (label * structure_elem_body) list and module_expr_body = | MEBident of module_path | MEBfunctor of mod_bound_id * module_type_body * module_expr_body | MEBstruct of mod_self_id * module_structure_body | MEBapply of module_expr_body * module_expr_body * constraints and module_body = { mod_expr : module_expr_body option; mod_user_type : module_type_body option; mod_type : module_type_body; mod_equiv : module_path option; mod_constraints : constraints }