(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* *) (* type = [Ct1 | .... | Ctn] *) (* Ci is the code pointer of the i-th body *) (* At runtime, a fixpoint environment (which is the same as the fixpoint *) (* itself) is a pointer to the field holding its code pointer. *) (* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint *) (* and de Bruijn [1] the last one. *) (* Access to these variables is performed by the [Koffsetclosure n] *) (* instruction that shifts the environment pointer of [n] fields. *) (* This allows representing mutual fixpoints in just one block. *) (* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint *) (* types. They are used in conversion tests (which requires that *) (* fixpoint types must be convertible). Their environment is the one of *) (* the last fixpoint : *) (* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *) (* ^ *) (* Representation of mutual cofix : *) (* a1 = [A_t | accumulate | [Cfx_t | fcofix1 ] ] *) (* ... *) (* anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ] *) (* *) (* fcofix1 = [clos_t | code1 | a1 |...| anbr | fv1 |...| fvn | type] *) (* ^ *) (* ... *) (* fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *) (* ^ *) (* The [ai] blocks are functions that accumulate their arguments: *) (* ai arg1 argp ---> *) (* ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ] *) (* If such a block is matched against, we have to force evaluation, *) (* function [fcofixi] is then applied to [ai'] [arg1] ... [argp] *) (* Once evaluation is completed [ai'] is updated with the result: *) (* ai' <-- *) (* [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ] *) (* This representation is nice because the application of the cofix is *) (* evaluated only once (it simulates a lazy evaluation) *) (* Moreover, when cofix don't have arguments, it is possible to create *) (* a cycle, e.g.: *) (* cofix one := cons 1 one *) (* a1 = [A_t | accumulate | [Cfx_t|fcofix1] ] *) (* fcofix1 = [clos_t | code | a1] *) (* The result of evaluating [a1] is [cons_t | 1 | a1]. *) (* When [a1] is updated : *) (* a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ] *) (* The cycle is created ... *) (* *) (* In Cfxe_t accumulators, we need to store [fcofixi] for testing *) (* conversion of cofixpoints (which is intentional). *) type argument = ArgConstr of Constr.t | ArgUniv of Univ.Level.t let empty_fv = { size= 0; fv_rev = []; fv_fwd = FvMap.empty } let push_fv d e = { size = e.size + 1; fv_rev = d :: e.fv_rev; fv_fwd = FvMap.add d e.size e.fv_fwd; } let fv r = !(r.in_env) let empty_comp_env ?(univs=0) ()= { nb_uni_stack = univs; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 0; in_env = ref empty_fv } (*i Creation functions for comp_env *) let rec add_param n sz l = if Int.equal n 0 then l else add_param (n - 1) sz (n+sz::l) let comp_env_fun ?(univs=0) arity = { nb_uni_stack = univs ; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = 0; pos_rec = []; offset = 1; in_env = ref empty_fv } let comp_env_fix_type rfv = { nb_uni_stack = 0; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 1; in_env = rfv } let comp_env_fix ndef curr_pos arity rfv = let prec = ref [] in for i = ndef downto 1 do prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec done; { nb_uni_stack = 0; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = ndef; pos_rec = !prec; offset = 2 * (ndef - curr_pos - 1)+1; in_env = rfv } let comp_env_cofix_type ndef rfv = { nb_uni_stack = 0; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 1+ndef; in_env = rfv } let comp_env_cofix ndef arity rfv = let prec = ref [] in for i = 1 to ndef do prec := Kenvacc i :: !prec done; { nb_uni_stack = 0; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = ndef; pos_rec = !prec; offset = ndef+1; in_env = rfv } (* [push_param ] add function parameters on the stack *) let push_param n sz r = { r with nb_stack = r.nb_stack + n; in_stack = add_param n sz r.in_stack } (* [push_local sz r] add a new variable on the stack at position [sz] *) let push_local sz r = { r with nb_stack = r.nb_stack + 1; in_stack = (sz + 1) :: r.in_stack } (*i Compilation of variables *) let find_at fv env = FvMap.find fv env.fv_fwd let pos_named id r = let env = !(r.in_env) in let cid = FVnamed id in try Kenvacc(r.offset + find_at cid env) with Not_found -> let pos = env.size in r.in_env := push_fv cid env; Kenvacc (r.offset + pos) let pos_rel i r sz = if i <= r.nb_stack then Kacc(sz - (List.nth r.in_stack (i-1))) else let i = i - r.nb_stack in if i <= r.nb_rec then try List.nth r.pos_rec (i-1) with (Failure _|Invalid_argument _) -> assert false else let i = i - r.nb_rec in let db = FVrel(i) in let env = !(r.in_env) in try Kenvacc(r.offset + find_at db env) with Not_found -> let pos = env.size in r.in_env := push_fv db env; Kenvacc(r.offset + pos) let pos_universe_var i r sz = if i < r.nb_uni_stack then Kacc (sz - r.nb_stack - (r.nb_uni_stack - i)) else let env = !(r.in_env) in let db = FVuniv_var i in try Kenvacc (r.offset + find_at db env) with Not_found -> let pos = env.size in r.in_env := push_fv db env; Kenvacc(r.offset + pos) (*i Examination of the continuation *) (* Discard all instructions up to the next label. *) (* This function is to be applied to the continuation before adding a *) (* non-terminating instruction (branch, raise, return, appterm) *) (* in front of it. *) let discard_dead_code cont = cont (*function [] -> [] | (Klabel _ | Krestart ) :: _ as cont -> cont | _ :: cont -> discard_dead_code cont *) (* Return a label to the beginning of the given continuation. *) (* If the sequence starts with a branch, use the target of that branch *) (* as the label, thus avoiding a jump to a jump. *) let label_code = function | Klabel lbl :: _ as cont -> (lbl, cont) | Kbranch lbl :: _ as cont -> (lbl, cont) | cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont) (* Return a branch to the continuation. That is, an instruction that, when executed, branches to the continuation or performs what the continuation performs. We avoid generating branches to returns. *) (* spiwack: make_branch was only used once. Changed it back to the ZAM one to match the appropriate semantics (old one avoided the introduction of an unconditional branch operation, which seemed appropriate for the 31-bit integers' code). As a memory, I leave the former version in this comment. let make_branch cont = match cont with | (Kreturn _ as return) :: cont' -> return, cont' | Klabel lbl as b :: _ -> b, cont | _ -> let b = Klabel(Label.create()) in b,b::cont *) let rec make_branch_2 lbl n cont = function Kreturn m :: _ -> (Kreturn (n + m), cont) | Klabel _ :: c -> make_branch_2 lbl n cont c | Kpop m :: c -> make_branch_2 lbl (n + m) cont c | _ -> match lbl with Some lbl -> (Kbranch lbl, cont) | None -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont) let make_branch cont = match cont with (Kbranch _ as branch) :: _ -> (branch, cont) | (Kreturn _ as return) :: _ -> (return, cont) | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont | _ -> make_branch_2 (None) 0 cont cont (* Check if we're in tailcall position *) let rec is_tailcall = function | Kreturn k :: _ -> Some k | Klabel _ :: c -> is_tailcall c | _ -> None (* Extention of the continuation *) (* Add a Kpop n instruction in front of a continuation *) let rec add_pop n = function | Kpop m :: cont -> add_pop (n+m) cont | Kreturn m:: cont -> Kreturn (n+m) ::cont | cont -> if Int.equal n 0 then cont else Kpop n :: cont let add_grab arity lbl cont = if Int.equal arity 1 then Klabel lbl :: cont else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont let add_grabrec rec_arg arity lbl cont = if Int.equal arity 1 && rec_arg < arity then Klabel lbl :: Kgrabrec 0 :: Krestart :: cont else Krestart :: Klabel lbl :: Kgrabrec rec_arg :: Krestart :: Kgrab (arity - 1) :: cont (* continuation of a cofix *) let cont_cofix arity = (* accu = res *) (* stk = ai::args::ra::... *) (* ai = [At|accumulate|[Cfx_t|fcofix]|args] *) [ Kpush; Kpush; (* stk = res::res::ai::args::ra::... *) Kacc 2; Kfield 1; Kfield 0; Kmakeblock(2, cofix_evaluated_tag); Kpush; (* stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*) Kacc 2; Ksetfield 1; (* ai = [At|accumulate|[Cfxe_t|fcofix|res]|args] *) (* stk = res::ai::args::ra::... *) Kacc 0; (* accu = res *) Kreturn (arity+2) ] (*i Global environment *) let global_env = ref empty_env let set_global_env env = global_env := env (* Code of closures *) let fun_code = ref [] let init_fun_code () = fun_code := [] (* Compilation of constructors and inductive types *) (* Limitation due to OCaml's representation of non-constant constructors: limited to 245 + 1 (0 tag) cases. *) exception TooLargeInductive of Id.t let max_nb_const = 0x1000000 let max_nb_block = 0x1000000 + last_variant_tag - 1 let str_max_constructors = Format.sprintf " which has more than %i constant constructors or more than %i non-constant constructors" max_nb_const max_nb_block let check_compilable ib = if not (ib.mind_nb_args <= max_nb_block && ib.mind_nb_constant <= max_nb_const) then raise (TooLargeInductive ib.mind_typename) (* Inv: arity > 0 *) let const_bn tag args = if tag < last_variant_tag then Const_bn(tag, args) else Const_bn(last_variant_tag, Array.append [|Const_b0 (tag - last_variant_tag) |] args) let code_makeblock arity tag cont = if tag < last_variant_tag then Kmakeblock(arity, tag) :: cont else Kpush :: Kconst (Const_b0 (tag - last_variant_tag)) :: Kmakeblock(arity+1, last_variant_tag) :: cont (* Inv : nparam + arity > 0 *) let code_construct tag nparams arity cont = let f_cont = add_pop nparams (if Int.equal arity 0 then [Kconst (Const_b0 tag); Kreturn 0] else if tag < last_variant_tag then [Kacc 0; Kpop 1; Kmakeblock(arity, tag); Kreturn 0] else [Kconst (Const_b0 (tag - last_variant_tag)); Kmakeblock(arity+1, last_variant_tag); Kreturn 0]) in let lbl = Label.create() in fun_code := [Ksequence (add_grab (nparams+arity) lbl f_cont,!fun_code)]; Kclosure(lbl,0) :: cont let get_strcst = function | Bstrconst sc -> sc | _ -> raise Not_found let rec str_const c = match kind_of_term c with | Sort s -> Bstrconst (Const_sorts s) | Cast(c,_,_) -> str_const c | App(f,args) -> begin match kind_of_term f with | Construct(((kn,j),i),u) -> begin let oib = lookup_mind kn !global_env in let oip = oib.mind_packets.(j) in let () = check_compilable oip in let tag,arity = oip.mind_reloc_tbl.(i-1) in let nparams = oib.mind_nparams in if Int.equal (nparams + arity) (Array.length args) then (* spiwack: *) (* 1/ tries to compile the constructor in an optimal way, it is supposed to work only if the arguments are all fully constructed, fails with Cbytecodes.NotClosed. it can also raise Not_found when there is no special treatment for this constructor for instance: tries to to compile an integer of the form I31 D1 D2 ... D31 to [D1D2...D31] as a processor number (a caml number actually) *) try try Bstrconst (Retroknowledge.get_vm_constant_static_info (!global_env).retroknowledge f args) with NotClosed -> (* 2/ if the arguments are not all closed (this is expectingly (and it is currently the case) the only reason why this exception is raised) tries to give a clever, run-time behavior to the constructor. Raises Not_found if there is no special treatment for this integer. this is done in a lazy fashion, using the constructor Bspecial because it needs to know the continuation and such, which can't be done at this time. for instance, for int31: if one of the digit is not closed, it's not impossible that the number gets fully instanciated at run-time, thus to ensure uniqueness of the representation in the vm it is necessary to try and build a caml integer during the execution *) let rargs = Array.sub args nparams arity in let b_args = Array.map str_const rargs in Bspecial ((Retroknowledge.get_vm_constant_dynamic_info (!global_env).retroknowledge f), b_args) with Not_found -> (* 3/ if no special behavior is available, then the compiler falls back to the normal behavior *) if Int.equal arity 0 then Bstrconst(Const_b0 tag) else let rargs = Array.sub args nparams arity in let b_args = Array.map str_const rargs in try let sc_args = Array.map get_strcst b_args in Bstrconst(const_bn tag sc_args) with Not_found -> Bmakeblock(tag,b_args) else let b_args = Array.map str_const args in (* spiwack: tries first to apply the run-time compilation behavior of the constructor, as in 2/ above *) try Bspecial ((Retroknowledge.get_vm_constant_dynamic_info (!global_env).retroknowledge f), b_args) with Not_found -> Bconstruct_app(tag, nparams, arity, b_args) end | _ -> Bconstr c end | Ind (ind,u) when Univ.Instance.is_empty u -> Bstrconst (Const_ind ind) | Construct (((kn,j),i),_) -> begin (* spiwack: tries first to apply the run-time compilation behavior of the constructor, as in 2/ above *) try Bspecial ((Retroknowledge.get_vm_constant_dynamic_info (!global_env).retroknowledge c), [| |]) with Not_found -> let oib = lookup_mind kn !global_env in let oip = oib.mind_packets.(j) in let () = check_compilable oip in let num,arity = oip.mind_reloc_tbl.(i-1) in let nparams = oib.mind_nparams in if Int.equal (nparams + arity) 0 then Bstrconst(Const_b0 num) else Bconstruct_app(num,nparams,arity,[||]) end | _ -> Bconstr c (* compiling application *) let comp_args comp_expr reloc args sz cont = let nargs_m_1 = Array.length args - 1 in let c = ref (comp_expr reloc args.(0) (sz + nargs_m_1) cont) in for i = 1 to nargs_m_1 do c := comp_expr reloc args.(i) (sz + nargs_m_1 - i) (Kpush :: !c) done; !c (* Precondition: args not empty *) let comp_app comp_fun comp_arg reloc f args sz cont = let nargs = Array.length args in match is_tailcall cont with | Some k -> comp_args comp_arg reloc args sz (Kpush :: comp_fun reloc f (sz + nargs) (Kappterm(nargs, k + nargs) :: (discard_dead_code cont))) | None -> if nargs < 4 then comp_args comp_arg reloc args sz (Kpush :: (comp_fun reloc f (sz+nargs) (Kapply nargs :: cont))) else let lbl,cont1 = label_code cont in Kpush_retaddr lbl :: (comp_args comp_arg reloc args (sz + 3) (Kpush :: (comp_fun reloc f (sz+3+nargs) (Kapply nargs :: cont1)))) (* Compiling free variables *) let compile_fv_elem reloc fv sz cont = match fv with | FVrel i -> pos_rel i reloc sz :: cont | FVnamed id -> pos_named id reloc :: cont | FVuniv_var i -> pos_universe_var i reloc sz :: cont let rec compile_fv reloc l sz cont = match l with | [] -> cont | [fvn] -> compile_fv_elem reloc fvn sz cont | fvn :: tl -> compile_fv_elem reloc fvn sz (Kpush :: compile_fv reloc tl (sz + 1) cont) (* Compiling constants *) let rec get_alias env kn = let cb = lookup_constant kn env in let tps = cb.const_body_code in match tps with | None -> kn | Some tps -> (match Cemitcodes.force tps with | BCalias kn' -> get_alias env kn' | _ -> kn) (* sz is the size of the local stack *) let rec compile_constr reloc c sz cont = match kind_of_term c with | Meta _ -> invalid_arg "Cbytegen.compile_constr : Meta" | Evar _ -> invalid_arg "Cbytegen.compile_constr : Evar" | Proj (p,c) -> let kn = Projection.constant p in let cb = lookup_constant kn !global_env in let pb = Option.get cb.const_proj in let n = pb.proj_arg in compile_constr reloc c sz (Kproj (n,kn) :: cont) | Cast(c,_,_) -> compile_constr reloc c sz cont | Rel i -> pos_rel i reloc sz :: cont | Var id -> pos_named id reloc :: cont | Const (kn,u) -> compile_const reloc kn u [||] sz cont | Ind (ind,u) -> let bcst = Bstrconst (Const_ind ind) in if Univ.Instance.is_empty u then compile_str_cst reloc bcst sz cont else comp_app compile_str_cst compile_universe reloc bcst (Univ.Instance.to_array u) sz cont | Sort (Prop _) | Construct _ -> compile_str_cst reloc (str_const c) sz cont | Sort (Type u) -> (* We separate global and local universes in [u]. The former will be part of the structured constant, while the later (if any) will be applied as arguments. *) let open Univ in begin let levels = Universe.levels u in let global_levels = LSet.filter (fun x -> Level.var_index x = None) levels in let local_levels = List.map_filter (fun x -> Level.var_index x) (LSet.elements levels) in (* We assume that [Universe.type0m] is a neutral element for [Universe.sup] *) let uglob = LSet.fold (fun lvl u -> Universe.sup u (Universe.make lvl)) global_levels Universe.type0m in if local_levels = [] then compile_str_cst reloc (Bstrconst (Const_sorts (Type uglob))) sz cont else let compile_get_univ reloc idx sz cont = compile_fv_elem reloc (FVuniv_var idx) sz cont in comp_app compile_str_cst compile_get_univ reloc (Bstrconst (Const_type u)) (Array.of_list local_levels) sz cont end | LetIn(_,xb,_,body) -> compile_constr reloc xb sz (Kpush :: (compile_constr (push_local sz reloc) body (sz+1) (add_pop 1 cont))) | Prod(id,dom,codom) -> let cont1 = Kpush :: compile_constr reloc dom (sz+1) (Kmakeprod :: cont) in compile_constr reloc (mkLambda(id,dom,codom)) sz cont1 | Lambda _ -> let params, body = decompose_lam c in let arity = List.length params in let r_fun = comp_env_fun arity in let lbl_fun = Label.create() in let cont_fun = compile_constr r_fun body arity [Kreturn arity] in fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)]; let fv = fv r_fun in compile_fv reloc fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont) | App(f,args) -> begin match kind_of_term f with | Construct _ -> compile_str_cst reloc (str_const c) sz cont | Const (kn,u) -> compile_const reloc kn u args sz cont | _ -> comp_app compile_constr compile_constr reloc f args sz cont end | Fix ((rec_args,init),(_,type_bodies,rec_bodies)) -> let ndef = Array.length type_bodies in let rfv = ref empty_fv in let lbl_types = Array.make ndef Label.no in let lbl_bodies = Array.make ndef Label.no in (* Compilation des types *) let env_type = comp_env_fix_type rfv in for i = 0 to ndef - 1 do let lbl,fcode = label_code (compile_constr env_type type_bodies.(i) 0 [Kstop]) in lbl_types.(i) <- lbl; fun_code := [Ksequence(fcode,!fun_code)] done; (* Compiling bodies *) for i = 0 to ndef - 1 do let params,body = decompose_lam rec_bodies.(i) in let arity = List.length params in let env_body = comp_env_fix ndef i arity rfv in let cont1 = compile_constr env_body body arity [Kreturn arity] in let lbl = Label.create () in lbl_bodies.(i) <- lbl; let fcode = add_grabrec rec_args.(i) arity lbl cont1 in fun_code := [Ksequence(fcode,!fun_code)] done; let fv = !rfv in compile_fv reloc fv.fv_rev sz (Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont) | CoFix(init,(_,type_bodies,rec_bodies)) -> let ndef = Array.length type_bodies in let lbl_types = Array.make ndef Label.no in let lbl_bodies = Array.make ndef Label.no in (* Compiling types *) let rfv = ref empty_fv in let env_type = comp_env_cofix_type ndef rfv in for i = 0 to ndef - 1 do let lbl,fcode = label_code (compile_constr env_type type_bodies.(i) 0 [Kstop]) in lbl_types.(i) <- lbl; fun_code := [Ksequence(fcode,!fun_code)] done; (* Compiling bodies *) for i = 0 to ndef - 1 do let params,body = decompose_lam rec_bodies.(i) in let arity = List.length params in let env_body = comp_env_cofix ndef arity rfv in let lbl = Label.create () in let cont1 = compile_constr env_body body (arity+1) (cont_cofix arity) in let cont2 = add_grab (arity+1) lbl cont1 in lbl_bodies.(i) <- lbl; fun_code := [Ksequence(cont2,!fun_code)]; done; let fv = !rfv in compile_fv reloc fv.fv_rev sz (Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont) | Case(ci,t,a,branchs) -> let ind = ci.ci_ind in let mib = lookup_mind (fst ind) !global_env in let oib = mib.mind_packets.(snd ind) in let () = check_compilable oib in let tbl = oib.mind_reloc_tbl in let lbl_consts = Array.make oib.mind_nb_constant Label.no in let nallblock = oib.mind_nb_args + 1 in (* +1 : accumulate *) let nblock = min nallblock (last_variant_tag + 1) in let lbl_blocks = Array.make nblock Label.no in let neblock = max 0 (nallblock - last_variant_tag) in let lbl_eblocks = Array.make neblock Label.no in let branch1,cont = make_branch cont in (* Compiling return type *) let lbl_typ,fcode = label_code (compile_constr reloc t sz [Kpop sz; Kstop]) in fun_code := [Ksequence(fcode,!fun_code)]; (* Compiling branches *) let lbl_sw = Label.create () in let sz_b,branch,is_tailcall = match branch1 with | Kreturn k -> assert (Int.equal k sz) ; sz, branch1, true | _ -> sz+3, Kjump, false in let annot = {ci = ci; rtbl = tbl; tailcall = is_tailcall} in (* Compiling branch for accumulators *) let lbl_accu, code_accu = label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch::cont) in lbl_blocks.(0) <- lbl_accu; let c = ref code_accu in (* perform the extra match if needed (to many block constructors) *) if neblock <> 0 then begin let lbl_b, code_b = label_code ( Kpush :: Kfield 0 :: Kswitch(lbl_eblocks, [||]) :: !c) in lbl_blocks.(last_variant_tag) <- lbl_b; c := code_b end; (* Compiling regular constructor branches *) for i = 0 to Array.length tbl - 1 do let tag, arity = tbl.(i) in if Int.equal arity 0 then let lbl_b,code_b = label_code(compile_constr reloc branchs.(i) sz_b (branch :: !c)) in lbl_consts.(tag) <- lbl_b; c := code_b else let args, body = decompose_lam branchs.(i) in let nargs = List.length args in let code_b = if Int.equal nargs arity then compile_constr (push_param arity sz_b reloc) body (sz_b+arity) (add_pop arity (branch :: !c)) else let sz_appterm = if is_tailcall then sz_b + arity else arity in compile_constr reloc branchs.(i) (sz_b+arity) (Kappterm(arity,sz_appterm) :: !c) in let code_b = if tag < last_variant_tag then Kpushfields arity :: code_b else Kacc 0::Kpop 1::Kpushfields(arity+1)::Kpop 1::code_b in let lbl_b,code_b = label_code code_b in if tag < last_variant_tag then lbl_blocks.(tag) <- lbl_b else lbl_eblocks.(tag - last_variant_tag) <- lbl_b; c := code_b done; c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: !c; let code_sw = match branch1 with (* spiwack : branch1 can't be a lbl anymore it's a Branch instead | Klabel lbl -> Kpush_retaddr lbl :: !c *) | Kbranch lbl -> Kpush_retaddr lbl :: !c | _ -> !c in compile_constr reloc a sz (try let entry = mkInd ind in Retroknowledge.get_vm_before_match_info (!global_env).retroknowledge entry code_sw with Not_found -> code_sw) and compile_str_cst reloc sc sz cont = match sc with | Bconstr c -> compile_constr reloc c sz cont | Bstrconst sc -> Kconst sc :: cont | Bmakeblock(tag,args) -> let nargs = Array.length args in comp_args compile_str_cst reloc args sz (code_makeblock nargs tag cont) | Bconstruct_app(tag,nparams,arity,args) -> if Int.equal (Array.length args) 0 then code_construct tag nparams arity cont else comp_app (fun _ _ _ cont -> code_construct tag nparams arity cont) compile_str_cst reloc () args sz cont | Bspecial (comp_fx, args) -> comp_fx reloc args sz cont (* spiwack : compilation of constants with their arguments. Makes a special treatment with 31-bit integer addition *) and compile_get_global reloc (kn,u) sz cont = let kn = get_alias !global_env kn in if Univ.Instance.is_empty u then Kgetglobal kn :: cont else comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont) compile_universe reloc () (Univ.Instance.to_array u) sz cont and compile_universe reloc uni sz cont = match Univ.Level.var_index uni with | None -> Kconst (Const_univ_level uni) :: cont | Some idx -> pos_universe_var idx reloc sz :: cont and compile_const reloc kn u args sz cont = let nargs = Array.length args in (* spiwack: checks if there is a specific way to compile the constant if there is not, Not_found is raised, and the function falls back on its normal behavior *) try Retroknowledge.get_vm_compiling_info (!global_env).retroknowledge (mkConstU (kn,u)) reloc args sz cont with Not_found -> if Int.equal nargs 0 then compile_get_global reloc (kn,u) sz cont else if Univ.Instance.is_empty u then (* normal compilation *) comp_app (fun _ _ sz cont -> compile_get_global reloc (kn,u) sz cont) compile_constr reloc () args sz cont else let compile_arg reloc constr_or_uni sz cont = match constr_or_uni with | ArgConstr cst -> compile_constr reloc cst sz cont | ArgUniv uni -> compile_universe reloc uni sz cont in let u = Univ.Instance.to_array u in let lu = Array.length u in let all = Array.init (lu + Array.length args) (fun i -> if i < lu then ArgUniv u.(i) else ArgConstr args.(i-lu)) in comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont) compile_arg reloc () all sz cont let is_univ_copy max u = let u = Univ.Instance.to_array u in if Array.length u = max then Array.fold_left_i (fun i acc u -> if acc then match Univ.Level.var_index u with | None -> false | Some l -> l = i else false) true u else false let dump_bytecodes init code fvs = let open Pp in (str "code =" ++ fnl () ++ pp_bytecodes init ++ fnl () ++ pp_bytecodes code ++ fnl () ++ str "fv = " ++ prlist_with_sep (fun () -> str "; ") pp_fv_elem fvs ++ fnl ()) let compile fail_on_error ?universes:(universes=0) env c = set_global_env env; init_fun_code (); Label.reset_label_counter (); let cont = [Kstop] in try let reloc, init_code = if Int.equal universes 0 then let reloc = empty_comp_env () in reloc, compile_constr reloc c 0 cont else (* We are going to generate a lambda, but merge the universe closure * with the function closure if it exists. *) let reloc = empty_comp_env () in let arity , body = match kind_of_term c with | Lambda _ -> let params, body = decompose_lam c in List.length params , body | _ -> 0 , c in let full_arity = arity + universes in let r_fun = comp_env_fun ~univs:universes arity in let lbl_fun = Label.create () in let cont_fun = compile_constr r_fun body full_arity [Kreturn full_arity] in fun_code := [Ksequence(add_grab full_arity lbl_fun cont_fun,!fun_code)]; let fv = fv r_fun in reloc, compile_fv reloc fv.fv_rev 0 (Kclosure(lbl_fun,fv.size) :: cont) in let fv = List.rev (!(reloc.in_env).fv_rev) in (if !Flags.dump_bytecode then Feedback.msg_debug (dump_bytecodes init_code !fun_code fv)) ; Some (init_code,!fun_code, Array.of_list fv) with TooLargeInductive tname -> let fn = if fail_on_error then CErrors.errorlabstrm "compile" else (fun x -> Feedback.msg_warning x) in (Pp.(fn (str "Cannot compile code for virtual machine as it uses inductive " ++ Id.print tname ++ str str_max_constructors)); None) let compile_constant_body fail_on_error env univs = function | Undef _ | OpaqueDef _ -> Some BCconstant | Def sb -> let body = Mod_subst.force_constr sb in let instance_size = match univs with | None -> 0 | Some univ -> Univ.UContext.size univ in match kind_of_term body with | Const (kn',u) when is_univ_copy instance_size u -> (* we use the canonical name of the constant*) let con= constant_of_kn (canonical_con kn') in Some (BCalias (get_alias env con)) | _ -> let res = compile fail_on_error ~universes:instance_size env body in Option.map (fun x -> BCdefined (to_memory x)) res (* Shortcut of the previous function used during module strengthening *) let compile_alias kn = BCalias (constant_of_kn (canonical_con kn)) (* spiwack: additional function which allow different part of compilation of the 31-bit integers *) let make_areconst n else_lbl cont = if n <= 0 then cont else Kareconst (n, else_lbl)::cont (* try to compile int31 as a const_b0. Succeed if all the arguments are closed fails otherwise by raising NotClosed*) let compile_structured_int31 fc args = if not fc then raise Not_found else Const_b0 (Array.fold_left (fun temp_i -> fun t -> match kind_of_term t with | Construct ((_,d),_) -> 2*temp_i+d-1 | _ -> raise NotClosed) 0 args ) (* this function is used for the compilation of the constructor of the int31, it is used when it appears not fully applied, or applied to at least one non-closed digit *) let dynamic_int31_compilation fc reloc args sz cont = if not fc then raise Not_found else let nargs = Array.length args in if Int.equal nargs 31 then let (escape,labeled_cont) = make_branch cont in let else_lbl = Label.create() in comp_args compile_str_cst reloc args sz ( Kisconst else_lbl::Kareconst(30,else_lbl)::Kcompint31::escape::Klabel else_lbl::Kmakeblock(31, 1)::labeled_cont) else let code_construct cont = (* spiwack: variant of the global code_construct which handles dynamic compilation of integers *) let f_cont = let else_lbl = Label.create () in [Kacc 0; Kpop 1; Kisconst else_lbl; Kareconst(30,else_lbl); Kcompint31; Kreturn 0; Klabel else_lbl; Kmakeblock(31, 1); Kreturn 0] in let lbl = Label.create() in fun_code := [Ksequence (add_grab 31 lbl f_cont,!fun_code)]; Kclosure(lbl,0) :: cont in if Int.equal nargs 0 then code_construct cont else comp_app (fun _ _ _ cont -> code_construct cont) compile_str_cst reloc () args sz cont (*(* template compilation for 2ary operation, it probably possible to make a generic such function with arity abstracted *) let op2_compilation op = let code_construct normal cont = (*kn cont =*) let f_cont = let else_lbl = Label.create () in Kareconst(2, else_lbl):: Kacc 0:: Kpop 1:: op:: Kreturn 0:: Klabel else_lbl:: (* works as comp_app with nargs = 2 and tailcall cont [Kreturn 0]*) (*Kgetglobal (get_alias !global_env kn):: *) normal:: Kappterm(2, 2):: [] (* = discard_dead_code [Kreturn 0] *) in let lbl = Label.create () in fun_code := [Ksequence (add_grab 2 lbl f_cont, !fun_code)]; Kclosure(lbl, 0)::cont in fun normal fc _ reloc args sz cont -> if not fc then raise Not_found else let nargs = Array.length args in if nargs=2 then (*if it is a fully applied addition*) let (escape, labeled_cont) = make_branch cont in let else_lbl = Label.create () in comp_args compile_constr reloc args sz (Kisconst else_lbl::(make_areconst 1 else_lbl (*Kaddint31::escape::Klabel else_lbl::Kpush::*) (op::escape::Klabel else_lbl::Kpush:: (* works as comp_app with nargs = 2 and non-tailcall cont*) (*Kgetglobal (get_alias !global_env kn):: *) normal:: Kapply 2::labeled_cont))) else if nargs=0 then code_construct normal cont else comp_app (fun _ _ _ cont -> code_construct normal cont) compile_constr reloc () args sz cont *) (*template for n-ary operation, invariant: n>=1, the operations does the following : 1/ checks if all the arguments are constants (i.e. non-block values) 2/ if they are, uses the "op" instruction to execute 3/ if at least one is not, branches to the normal behavior: Kgetglobal (get_alias !global_env kn) *) let op_compilation n op = let code_construct reloc kn sz cont = let f_cont = let else_lbl = Label.create () in Kareconst(n, else_lbl):: Kacc 0:: Kpop 1:: op:: Kreturn 0:: Klabel else_lbl:: (* works as comp_app with nargs = n and tailcall cont [Kreturn 0]*) compile_get_global reloc kn sz ( Kappterm(n, n):: []) (* = discard_dead_code [Kreturn 0] *) in let lbl = Label.create () in fun_code := [Ksequence (add_grab n lbl f_cont, !fun_code)]; Kclosure(lbl, 0)::cont in fun kn fc reloc args sz cont -> if not fc then raise Not_found else let nargs = Array.length args in if Int.equal nargs n then (*if it is a fully applied addition*) let (escape, labeled_cont) = make_branch cont in let else_lbl = Label.create () in comp_args compile_constr reloc args sz (Kisconst else_lbl::(make_areconst (n-1) else_lbl (*Kaddint31::escape::Klabel else_lbl::Kpush::*) (op::escape::Klabel else_lbl::Kpush:: (* works as comp_app with nargs = n and non-tailcall cont*) compile_get_global reloc kn sz (Kapply n::labeled_cont)))) else if Int.equal nargs 0 then code_construct reloc kn sz cont else comp_app (fun reloc _ sz cont -> code_construct reloc kn sz cont) compile_constr reloc () args sz cont let int31_escape_before_match fc cont = if not fc then raise Not_found else let escape_lbl, labeled_cont = label_code cont in (Kisconst escape_lbl)::Kdecompint31::labeled_cont