(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* anomaly (locstr^": cannot find "^(string_of_path sp)) let coq_reference locstr dir s = find_reference locstr ("Coq"::dir) s let coq_constant locstr dir s = constr_of_global (coq_reference locstr dir s) let gen_reference = coq_reference let gen_constant = coq_constant let list_try_find f = let rec try_find_f = function | [] -> raise Not_found | h::t -> try f h with Not_found -> try_find_f t in try_find_f let has_suffix_in_dirs dirs ref = let dir = dirpath (sp_of_global ref) in List.exists (fun d -> is_dirpath_prefix_of d dir) dirs let gen_constant_in_modules locstr dirs s = let dirs = List.map make_dir dirs in let id = id_of_string s in let all = Nametab.locate_all (make_short_qualid id) in let these = List.filter (has_suffix_in_dirs dirs) all in match these with | [x] -> constr_of_global x | [] -> anomalylabstrm "" (str (locstr^": cannot find "^s^ " in module"^(if List.length dirs > 1 then "s " else " ")) ++ prlist_with_sep pr_coma pr_dirpath dirs) | l -> anomalylabstrm "" (str (locstr^": found more than once object of name "^s^ " in module"^(if List.length dirs > 1 then "s " else " ")) ++ prlist_with_sep pr_coma pr_dirpath dirs) (* For tactics/commands requiring vernacular libraries *) let check_required_library d = let d' = List.map id_of_string d in let dir = make_dirpath (List.rev d') in if not (Library.library_is_loaded dir) then (* Loading silently ... let m, prefix = list_sep_last d' in read_library (dummy_loc,make_qualid (make_dirpath (List.rev prefix)) m) *) (* or failing ...*) error ("Library "^(list_last d)^" has to be required first") (************************************************************************) (* Specific Coq objects *) let init_reference dir s = gen_reference "Coqlib" ("Init"::dir) s let init_constant dir s = gen_constant "Coqlib" ("Init"::dir) s let arith_dir = ["Coq";"Arith"] let arith_modules = [arith_dir] let narith_dir = ["Coq";"NArith"] let zarith_dir = ["Coq";"ZArith"] let zarith_base_modules = [narith_dir;zarith_dir] let init_dir = ["Coq";"Init"] let init_modules = [ init_dir@["Datatypes"]; init_dir@["Logic"]; init_dir@["Specif"]; init_dir@["Logic_Type"]; init_dir@["Peano"]; init_dir@["Wf"] ] let coq_id = id_of_string "Coq" let init_id = id_of_string "Init" let arith_id = id_of_string "Arith" let datatypes_id = id_of_string "Datatypes" let logic_module = make_dir ["Coq";"Init";"Logic"] let logic_type_module = make_dir ["Coq";"Init";"Logic_Type"] let datatypes_module = make_dir ["Coq";"Init";"Datatypes"] let arith_module = make_dir ["Coq";"Arith";"Arith"] (* TODO: temporary hack *) let make_kn dir id = Libnames.encode_kn dir id (** Natural numbers *) let nat_kn = make_kn datatypes_module (id_of_string "nat") let nat_path = Libnames.make_path datatypes_module (id_of_string "nat") let glob_nat = IndRef (nat_kn,0) let path_of_O = ((nat_kn,0),1) let path_of_S = ((nat_kn,0),2) let glob_O = ConstructRef path_of_O let glob_S = ConstructRef path_of_S (** Booleans *) let bool_kn = make_kn datatypes_module (id_of_string "bool") let glob_bool = IndRef (bool_kn,0) let path_of_true = ((bool_kn,0),1) let path_of_false = ((bool_kn,0),2) let glob_true = ConstructRef path_of_true let glob_false = ConstructRef path_of_false (** Equality *) let eq_kn = make_kn logic_module (id_of_string "eq") let glob_eq = IndRef (eq_kn,0) type coq_sigma_data = { proj1 : constr; proj2 : constr; elim : constr; intro : constr; typ : constr } type 'a delayed = unit -> 'a let build_sigma_set () = { proj1 = init_constant ["Specif"] "projS1"; proj2 = init_constant ["Specif"] "projS2"; elim = init_constant ["Specif"] "sigS_rec"; intro = init_constant ["Specif"] "existS"; typ = init_constant ["Specif"] "sigS" } let build_sigma_type () = { proj1 = init_constant ["Specif"] "projT1"; proj2 = init_constant ["Specif"] "projT2"; elim = init_constant ["Specif"] "sigT_rec"; intro = init_constant ["Specif"] "existT"; typ = init_constant ["Specif"] "sigT" } (* Equalities *) type coq_leibniz_eq_data = { eq : constr; refl : constr; ind : constr; rrec : constr option; rect : constr option; congr: constr; sym : constr } let lazy_init_constant dir id = lazy (init_constant dir id) (* Equality on Set *) let coq_eq_eq = lazy_init_constant ["Logic"] "eq" let coq_eq_refl = lazy_init_constant ["Logic"] "refl_equal" let coq_eq_ind = lazy_init_constant ["Logic"] "eq_ind" let coq_eq_rec = lazy_init_constant ["Logic"] "eq_rec" let coq_eq_rect = lazy_init_constant ["Logic"] "eq_rect" let coq_eq_congr = lazy_init_constant ["Logic"] "f_equal" let coq_eq_sym = lazy_init_constant ["Logic"] "sym_eq" let coq_f_equal2 = lazy_init_constant ["Logic"] "f_equal2" let build_coq_eq_data () = { eq = Lazy.force coq_eq_eq; refl = Lazy.force coq_eq_refl; ind = Lazy.force coq_eq_ind; rrec = Some (Lazy.force coq_eq_rec); rect = Some (Lazy.force coq_eq_rect); congr = Lazy.force coq_eq_congr; sym = Lazy.force coq_eq_sym } let build_coq_eq () = Lazy.force coq_eq_eq let build_coq_sym_eq () = Lazy.force coq_eq_sym let build_coq_f_equal2 () = Lazy.force coq_f_equal2 (* Specif *) let coq_sumbool = lazy_init_constant ["Specif"] "sumbool" let build_coq_sumbool () = Lazy.force coq_sumbool (* Equality on Type as a Type *) let coq_identity_eq = lazy_init_constant ["Datatypes"] "identity" let coq_identity_refl = lazy_init_constant ["Datatypes"] "refl_identity" let coq_identity_ind = lazy_init_constant ["Datatypes"] "identity_ind" let coq_identity_rec = lazy_init_constant ["Datatypes"] "identity_rec" let coq_identity_rect = lazy_init_constant ["Datatypes"] "identity_rect" let coq_identity_congr = lazy_init_constant ["Logic_Type"] "congr_id" let coq_identity_sym = lazy_init_constant ["Logic_Type"] "sym_id" let build_coq_identity_data () = { eq = Lazy.force coq_identity_eq; refl = Lazy.force coq_identity_refl; ind = Lazy.force coq_identity_ind; rrec = Some (Lazy.force coq_identity_rec); rect = Some (Lazy.force coq_identity_rect); congr = Lazy.force coq_identity_congr; sym = Lazy.force coq_identity_sym } (* The False proposition *) let coq_False = lazy_init_constant ["Logic"] "False" (* The True proposition and its unique proof *) let coq_True = lazy_init_constant ["Logic"] "True" let coq_I = lazy_init_constant ["Logic"] "I" (* Connectives *) let coq_not = lazy_init_constant ["Logic"] "not" let coq_and = lazy_init_constant ["Logic"] "and" let coq_or = lazy_init_constant ["Logic"] "or" let coq_ex = lazy_init_constant ["Logic"] "ex" (* Runtime part *) let build_coq_True () = Lazy.force coq_True let build_coq_I () = Lazy.force coq_I let build_coq_False () = Lazy.force coq_False let build_coq_not () = Lazy.force coq_not let build_coq_and () = Lazy.force coq_and let build_coq_or () = Lazy.force coq_or let build_coq_ex () = Lazy.force coq_ex (* The following is less readable but does not depend on parsing *) let coq_eq_ref = lazy (init_reference ["Logic"] "eq") let coq_identity_ref = lazy (init_reference ["Datatypes"] "identity") let coq_existS_ref = lazy (init_reference ["Specif"] "existS") let coq_existT_ref = lazy (init_reference ["Specif"] "existT") let coq_not_ref = lazy (init_reference ["Logic"] "not") let coq_False_ref = lazy (init_reference ["Logic"] "False") let coq_sumbool_ref = lazy (init_reference ["Specif"] "sumbool") let coq_sig_ref = lazy (init_reference ["Specif"] "sig") let coq_or_ref = lazy (init_reference ["Logic"] "or")