(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* str "" | Some sc -> spc () ++ str "in scope" ++ spc () ++ str sc let _show_inactive_notations () = begin if CString.Set.is_empty !inactive_scopes_table then Feedback.msg_notice (str "No inactive notation scopes.") else let _ = Feedback.msg_notice (str "Inactive notation scopes:") in CString.Set.iter (fun sc -> Feedback.msg_notice (str " " ++ str sc)) !inactive_scopes_table end; if IRuleSet.is_empty !inactive_notations_table then Feedback.msg_notice (str "No individual inactive notations.") else let _ = Feedback.msg_notice (str "Inactive notations:") in IRuleSet.iter (function | NotationRule (scopt, ntn) -> Feedback.msg_notice (str ntn ++ show_scope scopt) | SynDefRule kn -> Feedback.msg_notice (str (Names.KerName.to_string kn))) !inactive_notations_table let deactivate_notation nr = match nr with | SynDefRule kn -> (* shouldn't we check wether it is well defined? *) inactive_notations_table := IRuleSet.add nr !inactive_notations_table | NotationRule (scopt, ntn) -> match availability_of_notation (scopt, ntn) (scopt, []) with | None -> user_err ~hdr:"Notation" (str ntn ++ spc () ++ str "does not exist" ++ (match scopt with | None -> spc () ++ str "in the empty scope." | Some _ -> show_scope scopt ++ str ".")) | Some _ -> if IRuleSet.mem nr !inactive_notations_table then Feedback.msg_warning (str "Notation" ++ spc () ++ str ntn ++ spc () ++ str "is already inactive" ++ show_scope scopt ++ str ".") else inactive_notations_table := IRuleSet.add nr !inactive_notations_table let reactivate_notation nr = try inactive_notations_table := IRuleSet.remove nr !inactive_notations_table with Not_found -> match nr with | NotationRule (scopt, ntn) -> Feedback.msg_warning (str "Notation" ++ spc () ++ str ntn ++ spc () ++ str "is already active" ++ show_scope scopt ++ str ".") | SynDefRule kn -> Feedback.msg_warning (str "Notation" ++ spc () ++ str (Names.KerName.to_string kn) ++ spc () ++ str "is already active.") let deactivate_scope sc = ignore (find_scope sc); (* ensures that the scope exists *) if CString.Set.mem sc !inactive_scopes_table then Feedback.msg_warning (str "Notation Scope" ++ spc () ++ str sc ++ spc () ++ str "is already inactive.") else inactive_scopes_table := CString.Set.add sc !inactive_scopes_table let reactivate_scope sc = try inactive_scopes_table := CString.Set.remove sc !inactive_scopes_table with Not_found -> Feedback.msg_warning (str "Notation Scope" ++ spc () ++ str sc ++ spc () ++ str "is already active.") let is_inactive_rule nr = IRuleSet.mem nr !inactive_notations_table || match nr with | NotationRule (Some sc, ntn) -> CString.Set.mem sc !inactive_scopes_table | NotationRule (None, ntn) -> false | SynDefRule _ -> false (* args: notation, scope, activate/deactivate *) let toggle_scope_printing ~scope ~activate = if activate then reactivate_scope scope else deactivate_scope scope let toggle_notation_printing ?scope ~notation ~activate = if activate then reactivate_notation (NotationRule (scope, notation)) else deactivate_notation (NotationRule (scope, notation)) (* This governs printing of projections using the dot notation symbols *) let print_projections = ref false let print_meta_as_hole = ref false let with_universes f = Flags.with_option print_universes f let with_meta_as_hole f = Flags.with_option print_meta_as_hole f let without_symbols f = Flags.with_option print_no_symbol f (* XXX: Where to put this in the library? Util maybe? *) let protect_ref r nf f x = let old_ref = !r in r := nf !r; try let res = f x in r := old_ref; res with reraise -> let reraise = Backtrace.add_backtrace reraise in r := old_ref; Exninfo.iraise reraise let without_specific_symbols l = protect_ref inactive_notations_table (fun tbl -> IRuleSet.(union (of_list l) tbl)) (**********************************************************************) (* Control printing of records *) (* Set Record Printing flag *) let record_print = ref true let _ = let open Goptions in declare_bool_option { optdepr = false; optname = "record printing"; optkey = ["Printing";"Records"]; optread = (fun () -> !record_print); optwrite = (fun b -> record_print := b) } let is_record indsp = try let _ = Recordops.lookup_structure indsp in true with Not_found -> false let encode_record r = let indsp = global_inductive r in if not (is_record indsp) then user_err ?loc:(loc_of_reference r) ~hdr:"encode_record" (str "This type is not a structure type."); indsp module PrintingRecordRecord = PrintingInductiveMake (struct let encode = encode_record let field = "Record" let title = "Types leading to pretty-printing using record notation: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using record notation" else " are not printed using record notation") end) module PrintingRecordConstructor = PrintingInductiveMake (struct let encode = encode_record let field = "Constructor" let title = "Types leading to pretty-printing using constructor form: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using constructor form" else " are not printed using constructor form") end) module PrintingRecord = Goptions.MakeRefTable(PrintingRecordRecord) module PrintingConstructor = Goptions.MakeRefTable(PrintingRecordConstructor) (**********************************************************************) (* Various externalisation functions *) let insert_delimiters e = function | None -> e | Some sc -> CAst.make @@ CDelimiters (sc,e) let insert_pat_delimiters ?loc p = function | None -> p | Some sc -> CAst.make ?loc @@ CPatDelimiters (sc,p) let insert_pat_alias ?loc p = function | Anonymous -> p | Name id -> CAst.make ?loc @@ CPatAlias (p,id) (**********************************************************************) (* conversion of references *) let extern_evar n l = CEvar (n,l) (** We allow customization of the global_reference printer. For instance, in the debugger the tables of global references may be inaccurate *) let default_extern_reference ?loc vars r = Qualid (Loc.tag ?loc @@ shortest_qualid_of_global vars r) let my_extern_reference = ref default_extern_reference let set_extern_reference f = my_extern_reference := f let get_extern_reference () = !my_extern_reference let extern_reference ?loc vars l = !my_extern_reference ?loc vars l (**********************************************************************) (* mapping patterns to cases_pattern_expr *) let add_patt_for_params ind l = if !Flags.in_debugger then l else Util.List.addn (Inductiveops.inductive_nparamdecls ind) (CAst.make @@ CPatAtom None) l let add_cpatt_for_params ind l = if !Flags.in_debugger then l else Util.List.addn (Inductiveops.inductive_nparamdecls ind) (CAst.make @@ PatVar Anonymous) l let drop_implicits_in_patt cst nb_expl args = let impl_st = (implicits_of_global cst) in let impl_data = extract_impargs_data impl_st in let rec impls_fit l = function |[],t -> Some (List.rev_append l t) |_,[] -> None |h::t, { CAst.v = CPatAtom None }::tt when is_status_implicit h -> impls_fit l (t,tt) |h::_,_ when is_status_implicit h -> None |_::t,hh::tt -> impls_fit (hh::l) (t,tt) in let rec aux = function |[] -> None |(_,imps)::t -> match impls_fit [] (imps,args) with |None -> aux t |x -> x in if Int.equal nb_expl 0 then aux impl_data else let imps = List.skipn_at_least nb_expl (select_stronger_impargs impl_st) in impls_fit [] (imps,args) let destPrim = function { CAst.v = CPrim t } -> Some t | _ -> None let destPatPrim = function { CAst.v = CPatPrim t } -> Some t | _ -> None let is_number s = let rec aux i = Int.equal (String.length s) i || match s.[i] with '0'..'9' -> aux (i+1) | _ -> false in aux 0 let is_zero s = let rec aux i = Int.equal (String.length s) i || (s.[i] == '0' && aux (i+1)) in aux 0 let make_notation_gen loc ntn mknot mkprim destprim l = match ntn,List.map destprim l with (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *) | "- _", [Some (Numeral (p,true))] when not (is_zero p) -> mknot (loc,ntn,([mknot (loc,"( _ )",l)])) | _ -> match decompose_notation_key ntn, l with | [Terminal "-"; Terminal x], [] when is_number x -> mkprim (loc, Numeral (x,false)) | [Terminal x], [] when is_number x -> mkprim (loc, Numeral (x,true)) | _ -> mknot (loc,ntn,l) let make_notation loc ntn (terms,termlists,binders as subst) = if not (List.is_empty termlists) || not (List.is_empty binders) then CAst.make ?loc @@ CNotation (ntn,subst) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CAst.make ?loc @@ CNotation (ntn,(l,[],[]))) (fun (loc,p) -> CAst.make ?loc @@ CPrim p) destPrim terms let make_pat_notation ?loc ntn (terms,termlists as subst) args = if not (List.is_empty termlists) then (CAst.make ?loc @@ CPatNotation (ntn,subst,args)) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CAst.make ?loc @@ CPatNotation (ntn,(l,[]),args)) (fun (loc,p) -> CAst.make ?loc @@ CPatPrim p) destPatPrim terms let mkPat ?loc qid l = CAst.make ?loc @@ (* Normally irrelevant test with v8 syntax, but let's do it anyway *) if List.is_empty l then CPatAtom (Some qid) else CPatCstr (qid,None,l) let pattern_printable_in_both_syntax (ind,_ as c) = let impl_st = extract_impargs_data (implicits_of_global (ConstructRef c)) in let nb_params = Inductiveops.inductive_nparams ind in List.exists (fun (_,impls) -> (List.length impls >= nb_params) && let params,args = Util.List.chop nb_params impls in (List.for_all is_status_implicit params)&&(List.for_all (fun x -> not (is_status_implicit x)) args) ) impl_st (* Better to use extern_glob_constr composed with injection/retraction ?? *) let rec extern_cases_pattern_in_scope (scopes:local_scopes) vars pat = try if !Flags.in_debugger || !Flags.raw_print || !print_no_symbol then raise No_match; let (na,sc,p) = uninterp_prim_token_cases_pattern pat in match availability_of_prim_token p sc scopes with | None -> raise No_match | Some key -> let loc = cases_pattern_loc pat in insert_pat_alias ?loc (insert_pat_delimiters ?loc (CAst.make ?loc @@ CPatPrim p) key) na with No_match -> try if !Flags.in_debugger || !Flags.raw_print || !print_no_symbol then raise No_match; extern_notation_pattern scopes vars pat (uninterp_cases_pattern_notations pat) with No_match -> CAst.map_with_loc (fun ?loc -> function | PatVar (Name id) -> CPatAtom (Some (Ident (loc,id))) | PatVar (Anonymous) -> CPatAtom None | PatCstr(cstrsp,args,na) -> let args = List.map (extern_cases_pattern_in_scope scopes vars) args in let p = try if !Flags.raw_print then raise Exit; let projs = Recordops.lookup_projections (fst cstrsp) in let rec ip projs args acc = match projs, args with | [], [] -> acc | proj :: q, pat :: tail -> let acc = match proj, pat with | _, { CAst.v = CPatAtom None } -> (* we don't want to have 'x := _' in our patterns *) acc | Some c, _ -> ((extern_reference ?loc Id.Set.empty (ConstRef c), pat) :: acc) | _ -> raise No_match in ip q tail acc | _ -> assert false in CPatRecord(List.rev (ip projs args [])) with Not_found | No_match | Exit -> let c = extern_reference ?loc Id.Set.empty (ConstructRef cstrsp) in if !Topconstr.asymmetric_patterns then if pattern_printable_in_both_syntax cstrsp then CPatCstr (c, None, args) else CPatCstr (c, Some (add_patt_for_params (fst cstrsp) args), []) else let full_args = add_patt_for_params (fst cstrsp) args in match drop_implicits_in_patt (ConstructRef cstrsp) 0 full_args with | Some true_args -> CPatCstr (c, None, true_args) | None -> CPatCstr (c, Some full_args, []) in (insert_pat_alias ?loc (CAst.make ?loc p) na).v ) pat and apply_notation_to_pattern ?loc gr ((subst,substlist),(nb_to_drop,more_args)) (tmp_scope, scopes as allscopes) vars = function | NotationRule (sc,ntn) -> begin match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes') vars c) subst in let ll = List.map (fun (c,(scopt,scl)) -> let subscope = (scopt,scl@scopes') in List.map (extern_cases_pattern_in_scope subscope vars) c) substlist in let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in let l2' = if !Topconstr.asymmetric_patterns || not (List.is_empty ll) then l2 else match drop_implicits_in_patt gr nb_to_drop l2 with |Some true_args -> true_args |None -> raise No_match in insert_pat_delimiters ?loc (make_pat_notation ?loc ntn (l,ll) l2') key end | SynDefRule kn -> let qid = Qualid (Loc.tag ?loc @@ shortest_qualid_of_syndef vars kn) in let l1 = List.rev_map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes) vars c) subst in let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in let l2' = if !Topconstr.asymmetric_patterns then l2 else match drop_implicits_in_patt gr (nb_to_drop + List.length l1) l2 with |Some true_args -> true_args |None -> raise No_match in assert (List.is_empty substlist); mkPat ?loc qid (List.rev_append l1 l2') and extern_notation_pattern (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if is_inactive_rule keyrule then raise No_match; let loc = t.loc in match t.v with | PatCstr (cstr,_,na) -> let p = apply_notation_to_pattern ?loc (ConstructRef cstr) (match_notation_constr_cases_pattern t pat) allscopes vars keyrule in insert_pat_alias ?loc p na | PatVar Anonymous -> CAst.make ?loc @@ CPatAtom None | PatVar (Name id) -> CAst.make ?loc @@ CPatAtom (Some (Ident (loc,id))) with No_match -> extern_notation_pattern allscopes vars t rules let rec extern_notation_ind_pattern allscopes vars ind args = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if is_inactive_rule keyrule then raise No_match; apply_notation_to_pattern (IndRef ind) (match_notation_constr_ind_pattern ind args pat) allscopes vars keyrule with No_match -> extern_notation_ind_pattern allscopes vars ind args rules let extern_ind_pattern_in_scope (scopes:local_scopes) vars ind args = (* pboutill: There are letins in pat which is incompatible with notations and not explicit application. *) if !Flags.in_debugger||Inductiveops.inductive_has_local_defs ind then let c = extern_reference vars (IndRef ind) in let args = List.map (extern_cases_pattern_in_scope scopes vars) args in CAst.make @@ CPatCstr (c, Some (add_patt_for_params ind args), []) else try if !Flags.raw_print || !print_no_symbol then raise No_match; let (sc,p) = uninterp_prim_token_ind_pattern ind args in match availability_of_prim_token p sc scopes with | None -> raise No_match | Some key -> insert_pat_delimiters (CAst.make @@ CPatPrim p) key with No_match -> try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_notation_ind_pattern scopes vars ind args (uninterp_ind_pattern_notations ind) with No_match -> let c = extern_reference vars (IndRef ind) in let args = List.map (extern_cases_pattern_in_scope scopes vars) args in match drop_implicits_in_patt (IndRef ind) 0 args with |Some true_args -> CAst.make @@ CPatCstr (c, None, true_args) |None -> CAst.make @@ CPatCstr (c, Some args, []) let extern_cases_pattern vars p = extern_cases_pattern_in_scope (None,[]) vars p (**********************************************************************) (* Externalising applications *) let occur_name na aty = match na with | Name id -> occur_var_constr_expr id aty | Anonymous -> false let is_projection nargs = function | Some r when not !Flags.in_debugger && not !Flags.raw_print && !print_projections -> (try let n = Recordops.find_projection_nparams r + 1 in if n <= nargs then Some n else None with Not_found -> None) | _ -> None let is_hole = function CHole _ | CEvar _ -> true | _ -> false let is_significant_implicit a = not (is_hole (a.CAst.v)) let is_needed_for_correct_partial_application tail imp = List.is_empty tail && not (maximal_insertion_of imp) exception Expl (* Implicit args indexes are in ascending order *) (* inctx is useful only if there is a last argument to be deduced from ctxt *) let explicitize inctx impl (cf,f) args = let impl = if !Constrintern.parsing_explicit then [] else impl in let n = List.length args in let rec exprec q = function | a::args, imp::impl when is_status_implicit imp -> let tail = exprec (q+1) (args,impl) in let visible = !Flags.raw_print || (!print_implicits && !print_implicits_explicit_args) || (is_needed_for_correct_partial_application tail imp) || (!print_implicits_defensive && (not (is_inferable_implicit inctx n imp) || !Flags.beautify) && is_significant_implicit (Lazy.force a)) in if visible then (Lazy.force a,Some (Loc.tag @@ ExplByName (name_of_implicit imp))) :: tail else tail | a::args, _::impl -> (Lazy.force a,None) :: exprec (q+1) (args,impl) | args, [] -> List.map (fun a -> (Lazy.force a,None)) args (*In case of polymorphism*) | [], (imp :: _) when is_status_implicit imp && maximal_insertion_of imp -> (* The non-explicit application cannot be parsed back with the same type *) raise Expl | [], _ -> [] in let ip = is_projection (List.length args) cf in let expl () = match ip with | Some i -> if not (List.is_empty impl) && is_status_implicit (List.nth impl (i-1)) then raise Expl else let (args1,args2) = List.chop i args in let (impl1,impl2) = if List.is_empty impl then [],[] else List.chop i impl in let args1 = exprec 1 (args1,impl1) in let args2 = exprec (i+1) (args2,impl2) in let ip = Some (List.length args1) in CApp ((ip,f),args1@args2) | None -> let args = exprec 1 (args,impl) in if List.is_empty args then f.CAst.v else CApp ((None, f), args) in try expl () with Expl -> let f',us = match f with { CAst.v = CRef (f,us) } -> f,us | _ -> assert false in let ip = if !print_projections then ip else None in CAppExpl ((ip, f', us), List.map Lazy.force args) let is_start_implicit = function | imp :: _ -> is_status_implicit imp && maximal_insertion_of imp | [] -> false let extern_global impl f us = if not !Constrintern.parsing_explicit && is_start_implicit impl then CAppExpl ((None, f, us), []) else CRef (f,us) let extern_app inctx impl (cf,f) us args = if List.is_empty args then (* If coming from a notation "Notation a := @b" *) CAppExpl ((None, f, us), []) else if not !Constrintern.parsing_explicit && ((!Flags.raw_print || (!print_implicits && not !print_implicits_explicit_args)) && List.exists is_status_implicit impl) then let args = List.map Lazy.force args in CAppExpl ((is_projection (List.length args) cf,f,us), args) else explicitize inctx impl (cf, CAst.make @@ CRef (f,us)) args let rec fill_arg_scopes args subscopes scopes = match args, subscopes with | [], _ -> [] | a :: args, scopt :: subscopes -> (a, (scopt, scopes)) :: fill_arg_scopes args subscopes scopes | a :: args, [] -> (a, (None, scopes)) :: fill_arg_scopes args [] scopes let extern_args extern env args = let map (arg, argscopes) = lazy (extern argscopes env arg) in List.map map args let match_coercion_app = function | {loc; v = GApp ({ v = GRef (r,_) },args)} -> Some (loc, r, 0, args) | _ -> None let rec remove_coercions inctx c = match match_coercion_app c with | Some (loc,r,pars,args) when not (!Flags.raw_print || !print_coercions) -> let nargs = List.length args in (try match Classops.hide_coercion r with | Some n when (n - pars) < nargs && (inctx || (n - pars)+1 < nargs) -> (* We skip a coercion *) let l = List.skipn (n - pars) args in let (a,l) = match l with a::l -> (a,l) | [] -> assert false in (* Recursively remove the head coercions *) let a' = remove_coercions true a in (* Don't flatten App's in case of funclass so that (atomic) notations on [a] work; should be compatible since printer does not care whether App's are collapsed or not and notations with an implicit coercion using funclass either would have already been confused with ordinary application or would have need a surrounding context and the coercion to funclass would have been made explicit to match *) if List.is_empty l then a' else CAst.make ?loc @@ GApp (a',l) | _ -> c with Not_found -> c) | _ -> c let rec flatten_application = function | {loc; v = GApp ({ v = GApp(a,l')},l)} -> flatten_application (CAst.make ?loc @@ GApp (a,l'@l)) | a -> a (**********************************************************************) (* mapping glob_constr to numerals (in presence of coercions, choose the *) (* one with no delimiter if possible) *) let extern_possible_prim_token scopes r = try let (sc,n) = uninterp_prim_token r in match availability_of_prim_token n sc scopes with | None -> None | Some key -> Some (insert_delimiters (CAst.make ?loc:(loc_of_glob_constr r) @@ CPrim n) key) with No_match -> None let extern_optimal_prim_token scopes r r' = let c = extern_possible_prim_token scopes r in let c' = if r==r' then None else extern_possible_prim_token scopes r' in match c,c' with | Some n, (Some ({ CAst.v = CDelimiters _}) | None) | _, Some n -> n | _ -> raise No_match (**********************************************************************) (* mapping decl *) let extended_glob_local_binder_of_decl loc = function | (p,bk,None,t) -> GLocalAssum (p,bk,t) | (p,bk,Some x, { v = GHole ( _, Misctypes.IntroAnonymous, None) } ) -> GLocalDef (p,bk,x,None) | (p,bk,Some x,t) -> GLocalDef (p,bk,x,Some t) let extended_glob_local_binder_of_decl ?loc u = CAst.make ?loc (extended_glob_local_binder_of_decl loc u) (**********************************************************************) (* mapping glob_constr to constr_expr *) let extern_glob_sort = function | GProp -> GProp | GSet -> GSet | GType _ as s when !print_universes -> s | GType _ -> GType [] let extern_universes = function | Some _ as l when !print_universes -> l | _ -> None let rec extern inctx scopes vars r = let r' = remove_coercions inctx r in try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_optimal_prim_token scopes r r' with No_match -> try let r'' = flatten_application r' in if !Flags.raw_print || !print_no_symbol then raise No_match; extern_notation scopes vars r'' (uninterp_notations r'') with No_match -> CAst.map_with_loc (fun ?loc -> function | GRef (ref,us) -> extern_global (select_stronger_impargs (implicits_of_global ref)) (extern_reference ?loc vars ref) (extern_universes us) | GVar id -> CRef (Ident (loc,id),None) | GEvar (n,[]) when !print_meta_as_hole -> CHole (None, Misctypes.IntroAnonymous, None) | GEvar (n,l) -> extern_evar n (List.map (on_snd (extern false scopes vars)) l) | GPatVar kind -> if !print_meta_as_hole then CHole (None, Misctypes.IntroAnonymous, None) else (match kind with | Evar_kinds.SecondOrderPatVar n -> CPatVar n | Evar_kinds.FirstOrderPatVar n -> CEvar (n,[])) | GApp (f,args) -> (match f with | {loc = rloc; v = GRef (ref,us) } -> let subscopes = find_arguments_scope ref in let args = fill_arg_scopes args subscopes (snd scopes) in begin try if !Flags.raw_print then raise Exit; let cstrsp = match ref with ConstructRef c -> c | _ -> raise Not_found in let struc = Recordops.lookup_structure (fst cstrsp) in if PrintingRecord.active (fst cstrsp) then () else if PrintingConstructor.active (fst cstrsp) then raise Exit else if not !record_print then raise Exit; let projs = struc.Recordops.s_PROJ in let locals = struc.Recordops.s_PROJKIND in let rec cut args n = if Int.equal n 0 then args else match args with | [] -> raise No_match | _ :: t -> cut t (n - 1) in let args = cut args struc.Recordops.s_EXPECTEDPARAM in let rec ip projs locs args acc = match projs with | [] -> acc | None :: q -> raise No_match | Some c :: q -> match locs with | [] -> anomaly (Pp.str "projections corruption [Constrextern.extern].") | (_, false) :: locs' -> (* we don't want to print locals *) ip q locs' args acc | (_, true) :: locs' -> match args with | [] -> raise No_match (* we give up since the constructor is not complete *) | (arg, scopes) :: tail -> let head = extern true scopes vars arg in ip q locs' tail ((extern_reference ?loc Id.Set.empty (ConstRef c), head) :: acc) in CRecord (List.rev (ip projs locals args [])) with | Not_found | No_match | Exit -> let args = extern_args (extern true) vars args in extern_app inctx (select_stronger_impargs (implicits_of_global ref)) (Some ref,extern_reference ?loc:rloc vars ref) (extern_universes us) args end | _ -> explicitize inctx [] (None,sub_extern false scopes vars f) (List.map (fun c -> lazy (sub_extern true scopes vars c)) args)) | GLetIn (na,b,t,c) -> CLetIn ((loc,na),sub_extern false scopes vars b, Option.map (extern_typ scopes vars) t, extern inctx scopes (add_vname vars na) c) | GProd (na,bk,t,c) -> let t = extern_typ scopes vars t in let (idl,c) = factorize_prod scopes (add_vname vars na) na bk t c in CProdN ([(Loc.tag na)::idl,Default bk,t],c) | GLambda (na,bk,t,c) -> let t = extern_typ scopes vars t in let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) na bk t c in CLambdaN ([(Loc.tag na)::idl,Default bk,t],c) | GCases (sty,rtntypopt,tml,eqns) -> let vars' = List.fold_right (Name.fold_right Id.Set.add) (cases_predicate_names tml) vars in let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in let tml = List.map (fun (tm,(na,x)) -> let na' = match na,tm with | Anonymous, { v = GVar id } -> begin match rtntypopt with | None -> None | Some ntn -> if occur_glob_constr id ntn then Some (Loc.tag Anonymous) else None end | Anonymous, _ -> None | Name id, { v = GVar id' } when Id.equal id id' -> None | Name _, _ -> Some (Loc.tag na) in (sub_extern false scopes vars tm, na', Option.map (fun (loc,(ind,nal)) -> let args = List.map (fun x -> CAst.make @@ PatVar x) nal in let fullargs = add_cpatt_for_params ind args in extern_ind_pattern_in_scope scopes vars ind fullargs ) x)) tml in let eqns = List.map (extern_eqn inctx scopes vars) eqns in CCases (sty,rtntypopt',tml,eqns) | GLetTuple (nal,(na,typopt),tm,b) -> CLetTuple (List.map (fun na -> (Loc.tag na)) nal, (Option.map (fun _ -> (Loc.tag na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern false scopes vars tm, extern inctx scopes (List.fold_left add_vname vars nal) b) | GIf (c,(na,typopt),b1,b2) -> CIf (sub_extern false scopes vars c, (Option.map (fun _ -> (Loc.tag na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2) | GRec (fk,idv,blv,tyv,bv) -> let vars' = Array.fold_right Id.Set.add idv vars in (match fk with | GFix (nv,n) -> let listdecl = Array.mapi (fun i fi -> let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in let bl = List.map (extended_glob_local_binder_of_decl ?loc) bl in let (assums,ids,bl) = extern_local_binder scopes vars bl in let vars0 = List.fold_right (Name.fold_right Id.Set.add) ids vars in let vars1 = List.fold_right (Name.fold_right Id.Set.add) ids vars' in let n = match fst nv.(i) with | None -> None | Some x -> Some (Loc.tag @@ Name.get_id (List.nth assums x)) in let ro = extern_recursion_order scopes vars (snd nv.(i)) in ((Loc.tag fi), (n, ro), bl, extern_typ scopes vars0 ty, extern false scopes vars1 def)) idv in CFix ((loc,idv.(n)),Array.to_list listdecl) | GCoFix n -> let listdecl = Array.mapi (fun i fi -> let bl = List.map (extended_glob_local_binder_of_decl ?loc) blv.(i) in let (_,ids,bl) = extern_local_binder scopes vars bl in let vars0 = List.fold_right (Name.fold_right Id.Set.add) ids vars in let vars1 = List.fold_right (Name.fold_right Id.Set.add) ids vars' in ((Loc.tag fi),bl,extern_typ scopes vars0 tyv.(i), sub_extern false scopes vars1 bv.(i))) idv in CCoFix ((loc,idv.(n)),Array.to_list listdecl)) | GSort s -> CSort (extern_glob_sort s) | GHole (e,naming,_) -> CHole (Some e, naming, None) (** TODO: extern tactics. *) | GCast (c, c') -> CCast (sub_extern true scopes vars c, Miscops.map_cast_type (extern_typ scopes vars) c') ) r' and extern_typ (_,scopes) = extern true (Notation.current_type_scope_name (),scopes) and sub_extern inctx (_,scopes) = extern inctx (None,scopes) and factorize_prod scopes vars na bk aty c = let c = extern_typ scopes vars c in match na, c with | Name id, { CAst.loc ; v = CProdN ([nal,Default bk',ty],c) } when binding_kind_eq bk bk' && constr_expr_eq aty ty && not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and factorize_lambda inctx scopes vars na bk aty c = let c = sub_extern inctx scopes vars c in match c with | { CAst.loc; v = CLambdaN ([nal,Default bk',ty],c) } when binding_kind_eq bk bk' && constr_expr_eq aty ty && not (occur_name na ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and extern_local_binder scopes vars = function [] -> ([],[],[]) | { v = GLocalDef (na,bk,bd,ty)}::l -> let (assums,ids,l) = extern_local_binder scopes (Name.fold_right Id.Set.add na vars) l in (assums,na::ids, CLocalDef((Loc.tag na), extern false scopes vars bd, Option.map (extern false scopes vars) ty) :: l) | { v = GLocalAssum (na,bk,ty)}::l -> let ty = extern_typ scopes vars ty in (match extern_local_binder scopes (Name.fold_right Id.Set.add na vars) l with (assums,ids,CLocalAssum(nal,k,ty')::l) when constr_expr_eq ty ty' && match na with Name id -> not (occur_var_constr_expr id ty') | _ -> true -> (na::assums,na::ids, CLocalAssum((Loc.tag na)::nal,k,ty')::l) | (assums,ids,l) -> (na::assums,na::ids, CLocalAssum([(Loc.tag na)],Default bk,ty) :: l)) | { v = GLocalPattern ((p,_),_,bk,ty)}::l -> let ty = if !Flags.raw_print then Some (extern_typ scopes vars ty) else None in let p = extern_cases_pattern vars p in let (assums,ids,l) = extern_local_binder scopes vars l in (assums,ids, CLocalPattern(Loc.tag @@ (p,ty)) :: l) and extern_eqn inctx scopes vars (loc,(ids,pl,c)) = Loc.tag ?loc ([loc,List.map (extern_cases_pattern_in_scope scopes vars) pl], extern inctx scopes vars c) and extern_notation (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> let loc = Glob_ops.loc_of_glob_constr t in try if is_inactive_rule keyrule then raise No_match; (* Adjusts to the number of arguments expected by the notation *) let (t,args,argsscopes,argsimpls) = match t.v ,n with | GApp (f,args), Some n when List.length args >= n -> let args1, args2 = List.chop n args in let subscopes, impls = match f.v with | GRef (ref,us) -> let subscopes = try List.skipn n (find_arguments_scope ref) with Failure _ -> [] in let impls = let impls = select_impargs_size (List.length args) (implicits_of_global ref) in try List.skipn n impls with Failure _ -> [] in subscopes,impls | _ -> [], [] in (if Int.equal n 0 then f else CAst.make @@ GApp (f,args1)), args2, subscopes, impls | GApp ({ v = GRef (ref,us) } as f, args), None -> let subscopes = find_arguments_scope ref in let impls = select_impargs_size (List.length args) (implicits_of_global ref) in f, args, subscopes, impls | GRef (ref,us), Some 0 -> CAst.make @@ GApp (t,[]), [], [], [] | _, None -> t, [], [], [] | _ -> raise No_match in (* Try matching ... *) let terms,termlists,binders = match_notation_constr !print_universes t pat in (* Try availability of interpretation ... *) let e = match keyrule with | NotationRule (sc,ntn) -> (match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern (* assuming no overloading: *) true (scopt,scl@scopes') vars c) terms in let ll = List.map (fun (c,(scopt,scl)) -> List.map (extern true (scopt,scl@scopes') vars) c) termlists in let bll = List.map (fun (bl,(scopt,scl)) -> pi3 (extern_local_binder (scopt,scl@scopes') vars bl)) binders in insert_delimiters (make_notation loc ntn (l,ll,bll)) key) | SynDefRule kn -> let l = List.map (fun (c,(scopt,scl)) -> extern true (scopt,scl@scopes) vars c, None) terms in let a = CRef (Qualid (loc, shortest_qualid_of_syndef vars kn),None) in CAst.make ?loc @@ if List.is_empty l then a else CApp ((None, CAst.make a),l) in if List.is_empty args then e else let args = fill_arg_scopes args argsscopes scopes in let args = extern_args (extern true) vars args in CAst.make ?loc @@ explicitize false argsimpls (None,e) args with No_match -> extern_notation allscopes vars t rules and extern_recursion_order scopes vars = function GStructRec -> CStructRec | GWfRec c -> CWfRec (extern true scopes vars c) | GMeasureRec (m,r) -> CMeasureRec (extern true scopes vars m, Option.map (extern true scopes vars) r) let extern_glob_constr vars c = extern false (None,[]) vars c let extern_glob_type vars c = extern_typ (None,[]) vars c (******************************************************************) (* Main translation function from constr -> constr_expr *) let extern_constr_gen lax goal_concl_style scopt env sigma t = (* "goal_concl_style" means do alpha-conversion using the "goal" convention *) (* i.e.: avoid using the names of goal/section/rel variables and the short *) (* names of global definitions of current module when computing names for *) (* bound variables. *) (* Not "goal_concl_style" means do alpha-conversion avoiding only *) (* those goal/section/rel variables that occurs in the subterm under *) (* consideration; see namegen.ml for further details *) let avoid = if goal_concl_style then ids_of_context env else [] in let r = Detyping.detype ~lax:lax goal_concl_style avoid env sigma t in let vars = vars_of_env env in extern false (scopt,[]) vars r let extern_constr_in_scope goal_concl_style scope env sigma t = extern_constr_gen false goal_concl_style (Some scope) env sigma t let extern_constr ?(lax=false) goal_concl_style env sigma t = extern_constr_gen lax goal_concl_style None env sigma t let extern_type goal_concl_style env sigma t = let avoid = if goal_concl_style then ids_of_context env else [] in let r = Detyping.detype goal_concl_style avoid env sigma t in extern_glob_type (vars_of_env env) r let extern_sort sigma s = extern_glob_sort (detype_sort sigma s) let extern_closed_glob ?lax goal_concl_style env sigma t = let avoid = if goal_concl_style then ids_of_context env else [] in let r = Detyping.detype_closed_glob ?lax goal_concl_style avoid env sigma t in let vars = vars_of_env env in extern false (None,[]) vars r (******************************************************************) (* Main translation function from pattern -> constr_expr *) let any_any_branch = (* | _ => _ *) Loc.tag ([],[CAst.make @@ PatVar Anonymous], CAst.make @@ GHole (Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None)) let rec glob_of_pat env sigma pat = CAst.make @@ match pat with | PRef ref -> GRef (ref,None) | PVar id -> GVar id | PEvar (evk,l) -> let test decl = function PVar id' -> Id.equal (NamedDecl.get_id decl) id' | _ -> false in let l = Evd.evar_instance_array test (Evd.find sigma evk) l in let id = match Evd.evar_ident evk sigma with | None -> Id.of_string "__" | Some id -> id in GEvar (id,List.map (on_snd (glob_of_pat env sigma)) l) | PRel n -> let id = try match lookup_name_of_rel n env with | Name id -> id | Anonymous -> anomaly ~label:"glob_constr_of_pattern" (Pp.str "index to an anonymous variable.") with Not_found -> Id.of_string ("_UNBOUND_REL_"^(string_of_int n)) in GVar id | PMeta None -> GHole (Evar_kinds.InternalHole, Misctypes.IntroAnonymous,None) | PMeta (Some n) -> GPatVar (Evar_kinds.FirstOrderPatVar n) | PProj (p,c) -> GApp (CAst.make @@ GRef (ConstRef (Projection.constant p),None), [glob_of_pat env sigma c]) | PApp (f,args) -> GApp (glob_of_pat env sigma f,Array.map_to_list (glob_of_pat env sigma) args) | PSoApp (n,args) -> GApp (CAst.make @@ GPatVar (Evar_kinds.SecondOrderPatVar n), List.map (glob_of_pat env sigma) args) | PProd (na,t,c) -> GProd (na,Explicit,glob_of_pat env sigma t,glob_of_pat (na::env) sigma c) | PLetIn (na,b,t,c) -> GLetIn (na,glob_of_pat env sigma b, Option.map (glob_of_pat env sigma) t, glob_of_pat (na::env) sigma c) | PLambda (na,t,c) -> GLambda (na,Explicit,glob_of_pat env sigma t, glob_of_pat (na::env) sigma c) | PIf (c,b1,b2) -> GIf (glob_of_pat env sigma c, (Anonymous,None), glob_of_pat env sigma b1, glob_of_pat env sigma b2) | PCase ({cip_style=LetStyle; cip_ind_tags=None},PMeta None,tm,[(0,n,b)]) -> let nal,b = it_destRLambda_or_LetIn_names n (glob_of_pat env sigma b) in GLetTuple (nal,(Anonymous,None),glob_of_pat env sigma tm,b) | PCase (info,p,tm,bl) -> let mat = match bl, info.cip_ind with | [], _ -> [] | _, Some ind -> let bl' = List.map (fun (i,n,c) -> (i,n,glob_of_pat env sigma c)) bl in simple_cases_matrix_of_branches ind bl' | _, None -> anomaly (Pp.str "PCase with some branches but unknown inductive.") in let mat = if info.cip_extensible then mat @ [any_any_branch] else mat in let indnames,rtn = match p, info.cip_ind, info.cip_ind_tags with | PMeta None, _, _ -> (Anonymous,None),None | _, Some ind, Some nargs -> return_type_of_predicate ind nargs (glob_of_pat env sigma p) | _ -> anomaly (Pp.str "PCase with non-trivial predicate but unknown inductive.") in GCases (RegularStyle,rtn,[glob_of_pat env sigma tm,indnames],mat) | PFix f -> (Detyping.detype_names false [] env (Global.env()) sigma (EConstr.of_constr (mkFix f))).v (** FIXME bad env *) | PCoFix c -> (Detyping.detype_names false [] env (Global.env()) sigma (EConstr.of_constr (mkCoFix c))).v | PSort s -> GSort s let extern_constr_pattern env sigma pat = extern true (None,[]) Id.Set.empty (glob_of_pat env sigma pat) let extern_rel_context where env sigma sign = let a = detype_rel_context where [] (names_of_rel_context env,env) sigma sign in let vars = vars_of_env env in let a = List.map (extended_glob_local_binder_of_decl) a in pi3 (extern_local_binder (None,[]) vars a)