(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false let encode_record r = let indsp = global_inductive r in if not (is_record indsp) then user_err_loc (loc_of_reference r,"encode_record", str "This type is not a structure type."); indsp module PrintingRecordRecord = PrintingInductiveMake (struct let encode = encode_record let field = "Record" let title = "Types leading to pretty-printing using record notation: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using record notation" else " are not printed using record notation") end) module PrintingRecordConstructor = PrintingInductiveMake (struct let encode = encode_record let field = "Constructor" let title = "Types leading to pretty-printing using constructor form: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using constructor form" else " are not printed using constructor form") end) module PrintingRecord = Goptions.MakeRefTable(PrintingRecordRecord) module PrintingConstructor = Goptions.MakeRefTable(PrintingRecordConstructor) (**********************************************************************) (* Various externalisation functions *) let insert_delimiters e = function | None -> e | Some sc -> CDelimiters (Loc.ghost,sc,e) let insert_pat_delimiters loc p = function | None -> p | Some sc -> CPatDelimiters (loc,sc,p) let insert_pat_alias loc p = function | Anonymous -> p | Name id -> CPatAlias (loc,p,id) (**********************************************************************) (* conversion of references *) let extern_evar loc n l = if !print_evar_arguments then CEvar (loc,n,l) else CEvar (loc,n,None) (** We allow customization of the global_reference printer. For instance, in the debugger the tables of global references may be inaccurate *) let default_extern_reference loc vars r = Qualid (loc,shortest_qualid_of_global vars r) let my_extern_reference = ref default_extern_reference let set_extern_reference f = my_extern_reference := f let get_extern_reference () = !my_extern_reference let extern_reference loc vars l = !my_extern_reference loc vars l let in_debugger = ref false (**********************************************************************) (* mapping patterns to cases_pattern_expr *) let add_patt_for_params ind l = if !in_debugger then l else Util.List.addn (Inductiveops.inductive_nparamdecls ind) (CPatAtom (Loc.ghost,None)) l let drop_implicits_in_patt cst nb_expl args = let impl_st = (implicits_of_global cst) in let impl_data = extract_impargs_data impl_st in let rec impls_fit l = function |[],t -> Some (List.rev_append l t) |_,[] -> None |h::t,CPatAtom(_,None)::tt when is_status_implicit h -> impls_fit l (t,tt) |h::_,_ when is_status_implicit h -> None |_::t,hh::tt -> impls_fit (hh::l) (t,tt) in let rec aux = function |[] -> None |(_,imps)::t -> match impls_fit [] (imps,args) with |None -> aux t |x -> x in if Int.equal nb_expl 0 then aux impl_data else let imps = List.skipn_at_least nb_expl (select_stronger_impargs impl_st) in impls_fit [] (imps,args) let has_curly_brackets ntn = String.length ntn >= 6 && (String.is_sub "{ _ } " ntn 0 || String.is_sub " { _ }" ntn (String.length ntn - 6) || String.string_contains ~where:ntn ~what:" { _ } ") let rec wildcards ntn n = if Int.equal n (String.length ntn) then [] else let l = spaces ntn (n+1) in if ntn.[n] == '_' then n::l else l and spaces ntn n = if Int.equal n (String.length ntn) then [] else if ntn.[n] == ' ' then wildcards ntn (n+1) else spaces ntn (n+1) let expand_curly_brackets loc mknot ntn l = let ntn' = ref ntn in let rec expand_ntn i = function | [] -> [] | a::l -> let a' = let p = List.nth (wildcards !ntn' 0) i - 2 in if p>=0 && p+5 <= String.length !ntn' && String.is_sub "{ _ }" !ntn' p then begin ntn' := String.sub !ntn' 0 p ^ "_" ^ String.sub !ntn' (p+5) (String.length !ntn' -p-5); mknot (loc,"{ _ }",[a]) end else a in a' :: expand_ntn (i+1) l in let l = expand_ntn 0 l in (* side effect *) mknot (loc,!ntn',l) let destPrim = function CPrim(_,t) -> Some t | _ -> None let destPatPrim = function CPatPrim(_,t) -> Some t | _ -> None let make_notation_gen loc ntn mknot mkprim destprim l = if has_curly_brackets ntn then expand_curly_brackets loc mknot ntn l else match ntn,List.map destprim l with (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *) | "- _", [Some (Numeral p)] when Bigint.is_strictly_pos p -> mknot (loc,ntn,([mknot (loc,"( _ )",l)])) | _ -> match decompose_notation_key ntn, l with | [Terminal "-"; Terminal x], [] -> (try mkprim (loc, Numeral (Bigint.neg (Bigint.of_string x))) with Failure _ -> mknot (loc,ntn,[])) | [Terminal x], [] -> (try mkprim (loc, Numeral (Bigint.of_string x)) with Failure _ -> mknot (loc,ntn,[])) | _ -> mknot (loc,ntn,l) let make_notation loc ntn (terms,termlists,binders as subst) = if not (List.is_empty termlists) || not (List.is_empty binders) then CNotation (loc,ntn,subst) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CNotation (loc,ntn,(l,[],[]))) (fun (loc,p) -> CPrim (loc,p)) destPrim terms let make_pat_notation loc ntn (terms,termlists as subst) args = if not (List.is_empty termlists) then CPatNotation (loc,ntn,subst,args) else make_notation_gen loc ntn (fun (loc,ntn,l) -> CPatNotation (loc,ntn,(l,[]),args)) (fun (loc,p) -> CPatPrim (loc,p)) destPatPrim terms let mkPat loc qid l = (* Normally irrelevant test with v8 syntax, but let's do it anyway *) if List.is_empty l then CPatAtom (loc,Some qid) else CPatCstr (loc,qid,[],l) let pattern_printable_in_both_syntax (ind,_ as c) = let impl_st = extract_impargs_data (implicits_of_global (ConstructRef c)) in let nb_params = Inductiveops.inductive_nparams ind in List.exists (fun (_,impls) -> (List.length impls >= nb_params) && let params,args = Util.List.chop nb_params impls in (List.for_all is_status_implicit params)&&(List.for_all (fun x -> not (is_status_implicit x)) args) ) impl_st (* Better to use extern_glob_constr composed with injection/retraction ?? *) let rec extern_cases_pattern_in_scope (scopes:local_scopes) vars pat = (* pboutill: There are letins in pat which is incompatible with notations and not explicit application. *) match pat with | PatCstr(loc,cstrsp,args,na) when !in_debugger||Inductiveops.constructor_has_local_defs cstrsp -> let c = extern_reference loc Id.Set.empty (ConstructRef cstrsp) in let args = List.map (extern_cases_pattern_in_scope scopes vars) args in CPatCstr (loc, c, add_patt_for_params (fst cstrsp) args, []) | _ -> try if !Flags.raw_print || !print_no_symbol then raise No_match; let (na,sc,p) = uninterp_prim_token_cases_pattern pat in match availability_of_prim_token p sc scopes with | None -> raise No_match | Some key -> let loc = cases_pattern_loc pat in insert_pat_alias loc (insert_pat_delimiters loc (CPatPrim(loc,p)) key) na with No_match -> try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_symbol_pattern scopes vars pat (uninterp_cases_pattern_notations pat) with No_match -> match pat with | PatVar (loc,Name id) -> CPatAtom (loc,Some (Ident (loc,id))) | PatVar (loc,Anonymous) -> CPatAtom (loc, None) | PatCstr(loc,cstrsp,args,na) -> let args = List.map (extern_cases_pattern_in_scope scopes vars) args in let p = try if !Flags.raw_print then raise Exit; let projs = Recordops.lookup_projections (fst cstrsp) in let rec ip projs args acc = match projs with | [] -> acc | None :: q -> ip q args acc | Some c :: q -> match args with | [] -> raise No_match | CPatAtom(_, None) :: tail -> ip q tail acc (* we don't want to have 'x = _' in our patterns *) | head :: tail -> ip q tail ((extern_reference loc Id.Set.empty (ConstRef c), head) :: acc) in CPatRecord(loc, List.rev (ip projs args [])) with Not_found | No_match | Exit -> let c = extern_reference loc Id.Set.empty (ConstructRef cstrsp) in if !Topconstr.oldfashion_patterns then if pattern_printable_in_both_syntax cstrsp then CPatCstr (loc, c, [], args) else CPatCstr (loc, c, add_patt_for_params (fst cstrsp) args, []) else let full_args = add_patt_for_params (fst cstrsp) args in match drop_implicits_in_patt (ConstructRef cstrsp) 0 full_args with |Some true_args -> CPatCstr (loc, c, [], true_args) |None -> CPatCstr (loc, c, full_args, []) in insert_pat_alias loc p na and apply_notation_to_pattern loc gr ((subst,substlist),(nb_to_drop,more_args)) (tmp_scope, scopes as allscopes) vars = function | NotationRule (sc,ntn) -> begin match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes') vars c) subst in let ll = List.map (fun (c,(scopt,scl)) -> let subscope = (scopt,scl@scopes') in List.map (extern_cases_pattern_in_scope subscope vars) c) substlist in let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in let l2' = if !Topconstr.oldfashion_patterns || not (List.is_empty ll) then l2 else match drop_implicits_in_patt gr nb_to_drop l2 with |Some true_args -> true_args |None -> raise No_match in insert_pat_delimiters loc (make_pat_notation loc ntn (l,ll) l2') key end | SynDefRule kn -> let qid = Qualid (loc, shortest_qualid_of_syndef vars kn) in let l1 = List.rev_map (fun (c,(scopt,scl)) -> extern_cases_pattern_in_scope (scopt,scl@scopes) vars c) subst in let l2 = List.map (extern_cases_pattern_in_scope allscopes vars) more_args in let l2' = if !Topconstr.oldfashion_patterns then l2 else match drop_implicits_in_patt gr (nb_to_drop + List.length l1) l2 with |Some true_args -> true_args |None -> raise No_match in assert (List.is_empty substlist); mkPat loc qid (List.rev_append l1 l2') and extern_symbol_pattern (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if List.mem keyrule !print_non_active_notations then raise No_match; match t with | PatCstr (loc,cstr,_,na) -> let p = apply_notation_to_pattern loc (ConstructRef cstr) (match_notation_constr_cases_pattern t pat) allscopes vars keyrule in insert_pat_alias loc p na | PatVar (loc,Anonymous) -> CPatAtom (loc, None) | PatVar (loc,Name id) -> CPatAtom (loc, Some (Ident (loc,id))) with No_match -> extern_symbol_pattern allscopes vars t rules let rec extern_symbol_ind_pattern allscopes vars ind args = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if List.mem keyrule !print_non_active_notations then raise No_match; apply_notation_to_pattern Loc.ghost (IndRef ind) (match_notation_constr_ind_pattern ind args pat) allscopes vars keyrule with No_match -> extern_symbol_ind_pattern allscopes vars ind args rules let extern_ind_pattern_in_scope (scopes:local_scopes) vars ind args = (* pboutill: There are letins in pat which is incompatible with notations and not explicit application. *) if !in_debugger||Inductiveops.inductive_has_local_defs ind then let c = extern_reference Loc.ghost vars (IndRef ind) in let args = List.map (extern_cases_pattern_in_scope scopes vars) args in CPatCstr (Loc.ghost, c, add_patt_for_params ind args, []) else try if !Flags.raw_print || !print_no_symbol then raise No_match; let (sc,p) = uninterp_prim_token_ind_pattern ind args in match availability_of_prim_token p sc scopes with | None -> raise No_match | Some key -> insert_pat_delimiters Loc.ghost (CPatPrim(Loc.ghost,p)) key with No_match -> try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_symbol_ind_pattern scopes vars ind args (uninterp_ind_pattern_notations ind) with No_match -> let c = extern_reference Loc.ghost vars (IndRef ind) in let args = List.map (extern_cases_pattern_in_scope scopes vars) args in match drop_implicits_in_patt (IndRef ind) 0 args with |Some true_args -> CPatCstr (Loc.ghost, c, [], true_args) |None -> CPatCstr (Loc.ghost, c, args, []) let extern_cases_pattern vars p = extern_cases_pattern_in_scope (None,[]) vars p (**********************************************************************) (* Externalising applications *) let occur_name na aty = match na with | Name id -> occur_var_constr_expr id aty | Anonymous -> false let is_projection primproj nargs = function | Some r when not !in_debugger && not !Flags.raw_print && !print_projections -> if primproj then Some 1 else (try let n = Recordops.find_projection_nparams r + 1 in if n <= nargs then Some n else None with Not_found -> None) | _ -> None let is_hole = function CHole _ -> true | _ -> false let is_significant_implicit a = not (is_hole a) let is_needed_for_correct_partial_application tail imp = List.is_empty tail && not (maximal_insertion_of imp) (* Implicit args indexes are in ascending order *) (* inctx is useful only if there is a last argument to be deduced from ctxt *) let explicitize loc inctx impl (cf,primproj,f) args = let impl = if !Constrintern.parsing_explicit then [] else impl in let n = List.length args in let rec exprec q = function | a::args, imp::impl when is_status_implicit imp -> let tail = exprec (q+1) (args,impl) in let visible = !Flags.raw_print || (!print_implicits && !print_implicits_explicit_args) || (is_needed_for_correct_partial_application tail imp) || (!print_implicits_defensive && is_significant_implicit a && not (is_inferable_implicit inctx n imp)) in if visible then (a,Some (Loc.ghost, ExplByName (name_of_implicit imp))) :: tail else tail | a::args, _::impl -> (a,None) :: exprec (q+1) (args,impl) | args, [] -> List.map (fun a -> (a,None)) args (*In case of polymorphism*) | [], _ -> [] in match is_projection primproj (List.length args) cf with | Some i as ip -> if not (List.is_empty impl) && is_status_implicit (List.nth impl (i-1)) then let args = exprec 1 (args,impl) in if primproj then CApp (loc, (None, f), args) else let f',us = match f with CRef (f,us) -> f,us | _ -> assert false in CAppExpl (loc,(ip,f',us),List.map fst args) else let (args1,args2) = List.chop i args in let (impl1,impl2) = if List.is_empty impl then [],[] else List.chop i impl in let args1 = exprec 1 (args1,impl1) in let args2 = exprec (i+1) (args2,impl2) in CApp (loc,(Some (List.length args1),f),args1@args2) | None -> let args = exprec 1 (args,impl) in match cf with | Some (ConstRef p) when not !in_debugger && not primproj && Environ.is_projection p (Global.env ()) -> (* Eta-expanded version of projection *) CApp (loc, (None, f), args) | _ -> if List.is_empty args then f else CApp (loc, (None, f), args) let extern_global loc impl f us = if not !Constrintern.parsing_explicit && not (List.is_empty impl) && List.for_all is_status_implicit impl then CAppExpl (loc, (None, f, us), []) else CRef (f,us) let extern_app loc inctx impl (cf,primproj,f) us args = if List.is_empty args then (* If coming from a notation "Notation a := @b" *) CAppExpl (loc, (None, f, us), []) else if not !Constrintern.parsing_explicit && ((!Flags.raw_print || (!print_implicits && not !print_implicits_explicit_args)) && List.exists is_status_implicit impl) then CAppExpl (loc, (is_projection primproj (List.length args) cf,f,us), args) else explicitize loc inctx impl (cf,primproj,CRef (f,us)) args let rec extern_args extern scopes env args subscopes = match args with | [] -> [] | a::args -> let argscopes, subscopes = match subscopes with | [] -> (None,scopes), [] | scopt::subscopes -> (scopt,scopes), subscopes in extern argscopes env a :: extern_args extern scopes env args subscopes let match_coercion_app = function | GApp (loc,GRef (_,r,_),args) -> Some (loc, r, 0, args) | GProj (loc, r, arg) -> let pars = Inductiveops.projection_nparams r in Some (loc, ConstRef r, pars, [arg]) | GApp (loc,GProj (_, r, c), args) -> let pars = Inductiveops.projection_nparams r in Some (loc, ConstRef r, pars, c :: args) | _ -> None let rec remove_coercions inctx c = match match_coercion_app c with | Some (loc,r,pars,args) when not (!Flags.raw_print || !print_coercions) -> let nargs = List.length args in (try match Classops.hide_coercion r with | Some n when (n - pars) < nargs && (inctx || (n - pars)+1 < nargs) -> (* We skip a coercion *) let l = List.skipn (n - pars) args in let (a,l) = match l with a::l -> (a,l) | [] -> assert false in (* Recursively remove the head coercions *) let a' = remove_coercions true a in (* Don't flatten App's in case of funclass so that (atomic) notations on [a] work; should be compatible since printer does not care whether App's are collapsed or not and notations with an implicit coercion using funclass either would have already been confused with ordinary application or would have need a surrounding context and the coercion to funclass would have been made explicit to match *) if List.is_empty l then a' else GApp (loc,a',l) | _ -> c with Not_found -> c) | _ -> c let rec flatten_application = function | GApp (loc,GApp(_,a,l'),l) -> flatten_application (GApp (loc,a,l'@l)) | a -> a (**********************************************************************) (* mapping glob_constr to numerals (in presence of coercions, choose the *) (* one with no delimiter if possible) *) let extern_possible_prim_token scopes r = try let (sc,n) = uninterp_prim_token r in match availability_of_prim_token n sc scopes with | None -> None | Some key -> Some (insert_delimiters (CPrim (loc_of_glob_constr r,n)) key) with No_match -> None let extern_optimal_prim_token scopes r r' = let c = extern_possible_prim_token scopes r in let c' = if r==r' then None else extern_possible_prim_token scopes r' in match c,c' with | Some n, (Some (CDelimiters _) | None) | _, Some n -> n | _ -> raise No_match (**********************************************************************) (* mapping glob_constr to constr_expr *) let extern_glob_sort = function | GProp -> GProp | GSet -> GSet | GType (Some _) as s when !print_universes -> s | GType _ -> GType None let extern_universes = function | Some _ as l when !print_universes -> l | _ -> None let rec extern inctx scopes vars r = let r' = remove_coercions inctx r in try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_optimal_prim_token scopes r r' with No_match -> try let r'' = flatten_application r' in if !Flags.raw_print || !print_no_symbol then raise No_match; extern_symbol scopes vars r'' (uninterp_notations r'') with No_match -> match r' with | GRef (loc,ref,us) -> extern_global loc (select_stronger_impargs (implicits_of_global ref)) (extern_reference loc vars ref) (extern_universes us) | GVar (loc,id) -> CRef (Ident (loc,id),None) | GEvar (loc,n,None) when !print_meta_as_hole -> CHole (loc, None, None) | GEvar (loc,n,l) -> extern_evar loc n (Option.map (List.map (extern false scopes vars)) l) | GPatVar (loc,n) -> if !print_meta_as_hole then CHole (loc, None, None) else CPatVar (loc,n) | GApp (loc,f,args) -> (match f with | GRef (rloc,ref,us) -> let subscopes = find_arguments_scope ref in let args = extern_args (extern true) (snd scopes) vars args subscopes in begin try if !Flags.raw_print then raise Exit; let cstrsp = match ref with ConstructRef c -> c | _ -> raise Not_found in let struc = Recordops.lookup_structure (fst cstrsp) in if PrintingRecord.active (fst cstrsp) then () else if PrintingConstructor.active (fst cstrsp) then raise Exit else if not !Flags.record_print then raise Exit; let projs = struc.Recordops.s_PROJ in let locals = struc.Recordops.s_PROJKIND in let rec cut args n = if Int.equal n 0 then args else match args with | [] -> raise No_match | _ :: t -> cut t (n - 1) in let args = cut args struc.Recordops.s_EXPECTEDPARAM in let rec ip projs locs args acc = match projs with | [] -> acc | None :: q -> raise No_match | Some c :: q -> match locs with | [] -> anomaly (Pp.str "projections corruption [Constrextern.extern]") | (_, false) :: locs' -> (* we don't want to print locals *) ip q locs' args acc | (_, true) :: locs' -> match args with | [] -> raise No_match (* we give up since the constructor is not complete *) | head :: tail -> ip q locs' tail ((extern_reference loc Id.Set.empty (ConstRef c), head) :: acc) in CRecord (loc, None, List.rev (ip projs locals args [])) with | Not_found | No_match | Exit -> extern_app loc inctx (select_stronger_impargs (implicits_of_global ref)) (Some ref,false,extern_reference rloc vars ref) (extern_universes us) args end | GProj (loc,p,c) -> let ref = ConstRef p in let subscopes = find_arguments_scope ref in let args = extern_args (extern true) (snd scopes) vars (c :: args) subscopes in extern_app loc inctx (projection_implicits (Global.env ()) p (select_stronger_impargs (implicits_of_global ref))) (Some ref, true, extern_reference loc vars ref) None args | _ -> explicitize loc inctx [] (None,false,sub_extern false scopes vars f) (List.map (sub_extern true scopes vars) args)) | GProj (loc,p,c) -> extern inctx scopes vars (GApp (loc,r',[])) | GLetIn (loc,na,t,c) -> CLetIn (loc,(loc,na),sub_extern false scopes vars t, extern inctx scopes (add_vname vars na) c) | GProd (loc,na,bk,t,c) -> let t = extern_typ scopes vars t in let (idl,c) = factorize_prod scopes (add_vname vars na) na bk t c in CProdN (loc,[(Loc.ghost,na)::idl,Default bk,t],c) | GLambda (loc,na,bk,t,c) -> let t = extern_typ scopes vars t in let (idl,c) = factorize_lambda inctx scopes (add_vname vars na) na bk t c in CLambdaN (loc,[(Loc.ghost,na)::idl,Default bk,t],c) | GCases (loc,sty,rtntypopt,tml,eqns) -> let vars' = List.fold_right (name_fold Id.Set.add) (cases_predicate_names tml) vars in let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in let tml = List.map (fun (tm,(na,x)) -> let na' = match na,tm with | Anonymous, GVar (_, id) -> begin match rtntypopt with | None -> None | Some ntn -> if occur_glob_constr id ntn then Some (Loc.ghost, Anonymous) else None end | Anonymous, _ -> None | Name id, GVar (_,id') when Id.equal id id' -> None | Name _, _ -> Some (Loc.ghost,na) in (sub_extern false scopes vars tm, (na',Option.map (fun (loc,ind,nal) -> let args = List.map (fun x -> PatVar (Loc.ghost, x)) nal in let fullargs = if !in_debugger then args else Notation_ops.add_patterns_for_params ind args in extern_ind_pattern_in_scope scopes vars ind fullargs ) x))) tml in let eqns = List.map (extern_eqn inctx scopes vars) eqns in CCases (loc,sty,rtntypopt',tml,eqns) | GLetTuple (loc,nal,(na,typopt),tm,b) -> CLetTuple (loc,List.map (fun na -> (Loc.ghost,na)) nal, (Option.map (fun _ -> (Loc.ghost,na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern false scopes vars tm, extern inctx scopes (List.fold_left add_vname vars nal) b) | GIf (loc,c,(na,typopt),b1,b2) -> CIf (loc,sub_extern false scopes vars c, (Option.map (fun _ -> (Loc.ghost,na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2) | GRec (loc,fk,idv,blv,tyv,bv) -> let vars' = Array.fold_right Id.Set.add idv vars in (match fk with | GFix (nv,n) -> let listdecl = Array.mapi (fun i fi -> let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in let (assums,ids,bl) = extern_local_binder scopes vars bl in let vars0 = List.fold_right (name_fold Id.Set.add) ids vars in let vars1 = List.fold_right (name_fold Id.Set.add) ids vars' in let n = match fst nv.(i) with | None -> None | Some x -> Some (Loc.ghost, out_name (List.nth assums x)) in let ro = extern_recursion_order scopes vars (snd nv.(i)) in ((Loc.ghost, fi), (n, ro), bl, extern_typ scopes vars0 ty, extern false scopes vars1 def)) idv in CFix (loc,(loc,idv.(n)),Array.to_list listdecl) | GCoFix n -> let listdecl = Array.mapi (fun i fi -> let (_,ids,bl) = extern_local_binder scopes vars blv.(i) in let vars0 = List.fold_right (name_fold Id.Set.add) ids vars in let vars1 = List.fold_right (name_fold Id.Set.add) ids vars' in ((Loc.ghost, fi),bl,extern_typ scopes vars0 tyv.(i), sub_extern false scopes vars1 bv.(i))) idv in CCoFix (loc,(loc,idv.(n)),Array.to_list listdecl)) | GSort (loc,s) -> CSort (loc,extern_glob_sort s) | GHole (loc,e,_) -> CHole (loc, Some e, None) (** TODO: extern tactics. *) | GCast (loc,c, c') -> CCast (loc,sub_extern true scopes vars c, Miscops.map_cast_type (extern_typ scopes vars) c') and extern_typ (_,scopes) = extern true (Some Notation.type_scope,scopes) and sub_extern inctx (_,scopes) = extern inctx (None,scopes) and factorize_prod scopes vars na bk aty c = let c = extern_typ scopes vars c in match na, c with | Name id, CProdN (loc,[nal,Default bk',ty],c) when binding_kind_eq bk bk' && constr_expr_eq aty ty && not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and factorize_lambda inctx scopes vars na bk aty c = let c = sub_extern inctx scopes vars c in match c with | CLambdaN (loc,[nal,Default bk',ty],c) when binding_kind_eq bk bk' && constr_expr_eq aty ty && not (occur_name na ty) (* avoid na in ty escapes scope *) -> nal,c | _ -> [],c and extern_local_binder scopes vars = function [] -> ([],[],[]) | (na,bk,Some bd,ty)::l -> let (assums,ids,l) = extern_local_binder scopes (name_fold Id.Set.add na vars) l in (assums,na::ids, LocalRawDef((Loc.ghost,na), extern false scopes vars bd) :: l) | (na,bk,None,ty)::l -> let ty = extern_typ scopes vars ty in (match extern_local_binder scopes (name_fold Id.Set.add na vars) l with (assums,ids,LocalRawAssum(nal,k,ty')::l) when constr_expr_eq ty ty' && match na with Name id -> not (occur_var_constr_expr id ty') | _ -> true -> (na::assums,na::ids, LocalRawAssum((Loc.ghost,na)::nal,k,ty')::l) | (assums,ids,l) -> (na::assums,na::ids, LocalRawAssum([(Loc.ghost,na)],Default bk,ty) :: l)) and extern_eqn inctx scopes vars (loc,ids,pl,c) = (loc,[loc,List.map (extern_cases_pattern_in_scope scopes vars) pl], extern inctx scopes vars c) and extern_symbol (tmp_scope,scopes as allscopes) vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> let loc = Glob_ops.loc_of_glob_constr t in try if List.mem keyrule !print_non_active_notations then raise No_match; (* Adjusts to the number of arguments expected by the notation *) let (t,args,argsscopes,argsimpls) = match t,n with | GApp (_,f,args), Some n when List.length args >= n -> let args1, args2 = List.chop n args in let subscopes, impls = match f with | GRef (_,ref,us) -> let subscopes = try List.skipn n (find_arguments_scope ref) with Failure _ -> [] in let impls = let impls = select_impargs_size (List.length args) (implicits_of_global ref) in try List.skipn n impls with Failure _ -> [] in subscopes,impls | _ -> [], [] in (if Int.equal n 0 then f else GApp (Loc.ghost,f,args1)), args2, subscopes, impls | GApp (_,(GRef (_,ref,us) as f),args), None -> let subscopes = find_arguments_scope ref in let impls = select_impargs_size (List.length args) (implicits_of_global ref) in f, args, subscopes, impls | GRef (_,ref,us), Some 0 -> GApp (Loc.ghost,t,[]), [], [], [] | _, None -> t, [], [], [] | _ -> raise No_match in (* Try matching ... *) let terms,termlists,binders = match_notation_constr !print_universes t pat in (* Try availability of interpretation ... *) let e = match keyrule with | NotationRule (sc,ntn) -> (match availability_of_notation (sc,ntn) allscopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,(scopt,scl)) -> extern (* assuming no overloading: *) true (scopt,scl@scopes') vars c) terms in let ll = List.map (fun (c,(scopt,scl)) -> List.map (extern true (scopt,scl@scopes') vars) c) termlists in let bll = List.map (fun (bl,(scopt,scl)) -> pi3 (extern_local_binder (scopt,scl@scopes') vars bl)) binders in insert_delimiters (make_notation loc ntn (l,ll,bll)) key) | SynDefRule kn -> let l = List.map (fun (c,(scopt,scl)) -> extern true (scopt,scl@scopes) vars c, None) terms in let a = CRef (Qualid (loc, shortest_qualid_of_syndef vars kn),None) in if List.is_empty l then a else CApp (loc,(None,a),l) in if List.is_empty args then e else let args = extern_args (extern true) scopes vars args argsscopes in explicitize loc false argsimpls (None,false,e) args with No_match -> extern_symbol allscopes vars t rules and extern_recursion_order scopes vars = function GStructRec -> CStructRec | GWfRec c -> CWfRec (extern true scopes vars c) | GMeasureRec (m,r) -> CMeasureRec (extern true scopes vars m, Option.map (extern true scopes vars) r) let extern_glob_constr vars c = extern false (None,[]) vars c let extern_glob_type vars c = extern_typ (None,[]) vars c (******************************************************************) (* Main translation function from constr -> constr_expr *) let loc = Loc.ghost (* for constr and pattern, locations are lost *) let extern_constr_gen goal_concl_style scopt env t = (* "goal_concl_style" means do alpha-conversion using the "goal" convention *) (* i.e.: avoid using the names of goal/section/rel variables and the short *) (* names of global definitions of current module when computing names for *) (* bound variables. *) (* Not "goal_concl_style" means do alpha-conversion avoiding only *) (* those goal/section/rel variables that occurs in the subterm under *) (* consideration; see namegen.ml for further details *) let avoid = if goal_concl_style then ids_of_context env else [] in let rel_env_names = names_of_rel_context env in let r = Detyping.detype goal_concl_style avoid rel_env_names t in let vars = vars_of_env env in extern false (scopt,[]) vars r let extern_constr_in_scope goal_concl_style scope env t = extern_constr_gen goal_concl_style (Some scope) env t let extern_constr goal_concl_style env t = extern_constr_gen goal_concl_style None env t let extern_type goal_concl_style env t = let avoid = if goal_concl_style then ids_of_context env else [] in let rel_env_names = names_of_rel_context env in let r = Detyping.detype goal_concl_style avoid rel_env_names t in extern_glob_type (vars_of_env env) r let extern_sort s = extern_glob_sort (detype_sort s) (******************************************************************) (* Main translation function from pattern -> constr_expr *) let any_any_branch = (* | _ => _ *) (loc,[],[PatVar (loc,Anonymous)],GHole (loc,Evar_kinds.InternalHole,None)) let rec glob_of_pat env = function | PRef ref -> GRef (loc,ref,None) | PVar id -> GVar (loc,id) | PEvar (n,l) -> GEvar (loc,n,Some (Array.map_to_list (glob_of_pat env) l)) | PRel n -> let id = try match lookup_name_of_rel n env with | Name id -> id | Anonymous -> anomaly ~label:"glob_constr_of_pattern" (Pp.str "index to an anonymous variable") with Not_found -> Id.of_string ("_UNBOUND_REL_"^(string_of_int n)) in GVar (loc,id) | PMeta None -> GHole (loc,Evar_kinds.InternalHole, None) | PMeta (Some n) -> GPatVar (loc,(false,n)) | PProj (p,c) -> GApp (loc,GRef (loc, ConstRef p,None),[glob_of_pat env c]) | PApp (f,args) -> GApp (loc,glob_of_pat env f,Array.map_to_list (glob_of_pat env) args) | PSoApp (n,args) -> GApp (loc,GPatVar (loc,(true,n)), List.map (glob_of_pat env) args) | PProd (na,t,c) -> GProd (loc,na,Explicit,glob_of_pat env t,glob_of_pat (na::env) c) | PLetIn (na,t,c) -> GLetIn (loc,na,glob_of_pat env t, glob_of_pat (na::env) c) | PLambda (na,t,c) -> GLambda (loc,na,Explicit,glob_of_pat env t, glob_of_pat (na::env) c) | PIf (c,b1,b2) -> GIf (loc, glob_of_pat env c, (Anonymous,None), glob_of_pat env b1, glob_of_pat env b2) | PCase ({cip_style=LetStyle; cip_ind_args=None},PMeta None,tm,[(0,n,b)]) -> let nal,b = it_destRLambda_or_LetIn_names n (glob_of_pat env b) in GLetTuple (loc,nal,(Anonymous,None),glob_of_pat env tm,b) | PCase (info,p,tm,bl) -> let mat = match bl, info.cip_ind with | [], _ -> [] | _, Some ind -> let bl' = List.map (fun (i,n,c) -> (i,n,glob_of_pat env c)) bl in simple_cases_matrix_of_branches ind bl' | _, None -> anomaly (Pp.str "PCase with some branches but unknown inductive") in let mat = if info.cip_extensible then mat @ [any_any_branch] else mat in let indnames,rtn = match p, info.cip_ind, info.cip_ind_args with | PMeta None, _, _ -> (Anonymous,None),None | _, Some ind, Some nargs -> return_type_of_predicate ind nargs (glob_of_pat env p) | _ -> anomaly (Pp.str "PCase with non-trivial predicate but unknown inductive") in GCases (loc,RegularStyle,rtn,[glob_of_pat env tm,indnames],mat) | PFix f -> Detyping.detype false [] env (mkFix f) | PCoFix c -> Detyping.detype false [] env (mkCoFix c) | PSort s -> GSort (loc,s) let extern_constr_pattern env pat = extern true (None,[]) Id.Set.empty (glob_of_pat env pat) let extern_rel_context where env sign = let a = detype_rel_context where [] (names_of_rel_context env) sign in let vars = vars_of_env env in pi3 (extern_local_binder (None,[]) vars a)