(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* let qid = try Nametab.shortest_qualid_of_universe na with Not_found -> let name = Id.of_string_soft (string_of_int n) in Libnames.make_qualid d name in Libnames.Qualid (Loc.tag @@ qid) | None -> Libnames.Ident (Loc.tag @@ Id.of_string_soft (Level.to_string l)) let pr_with_global_universes l = Libnames.pr_reference (reference_of_level l) (** Global universe information outside the kernel, to handle polymorphic universe names in sections that have to be discharged. *) let universe_map = (Summary.ref UnivIdMap.empty ~name:"global universe info" : bool Nametab.UnivIdMap.t ref) let add_global_universe u p = match Level.name u with | Some n -> universe_map := Nametab.UnivIdMap.add n p !universe_map | None -> () let is_polymorphic l = match Level.name l with | Some n -> (try Nametab.UnivIdMap.find n !universe_map with Not_found -> false) | None -> false (** Local universe names of polymorphic references *) type universe_binders = Univ.Level.t Names.Id.Map.t let empty_binders = Id.Map.empty let universe_binders_table = Summary.ref Refmap.empty ~name:"universe binders" let universe_binders_of_global ref : universe_binders = try let l = Refmap.find ref !universe_binders_table in l with Not_found -> Names.Id.Map.empty let cache_ubinder (_,(ref,l)) = universe_binders_table := Refmap.add ref l !universe_binders_table let subst_ubinder (subst,(ref,l as orig)) = let ref' = fst (Globnames.subst_global subst ref) in if ref == ref' then orig else ref', l let discharge_ubinder (_,(ref,l)) = Some (Lib.discharge_global ref, l) let ubinder_obj : Globnames.global_reference * universe_binders -> Libobject.obj = let open Libobject in declare_object { (default_object "universe binder") with cache_function = cache_ubinder; load_function = (fun _ x -> cache_ubinder x); classify_function = (fun x -> Substitute x); subst_function = subst_ubinder; discharge_function = discharge_ubinder; rebuild_function = (fun x -> x); } let register_universe_binders ref ubinders = let open Names in (* Add the polymorphic (section) universes *) let ubinders = UnivIdMap.fold (fun lvl poly ubinders -> let qid = Nametab.shortest_qualid_of_universe lvl in let level = Level.make (fst lvl) (snd lvl) in if poly then Id.Map.add (snd (Libnames.repr_qualid qid)) level ubinders else ubinders) !universe_map ubinders in if not (Id.Map.is_empty ubinders) then Lib.add_anonymous_leaf (ubinder_obj (ref,ubinders)) type univ_name_list = Misctypes.lname list let universe_binders_with_opt_names ref levels = function | None -> universe_binders_of_global ref | Some udecl -> if Int.equal(List.length levels) (List.length udecl) then List.fold_left2 (fun acc { CAst.v = na} lvl -> match na with | Anonymous -> acc | Name na -> Names.Id.Map.add na lvl acc) empty_binders udecl levels else CErrors.user_err ~hdr:"universe_binders_with_opt_names" Pp.(str "Universe instance should have length " ++ int (List.length levels)) (* To disallow minimization to Set *) let set_minimization = ref true let is_set_minimization () = !set_minimization type universe_constraint = | ULe of Universe.t * Universe.t | UEq of Universe.t * Universe.t | ULub of Level.t * Level.t | UWeak of Level.t * Level.t module Constraints = struct module S = Set.Make( struct type t = universe_constraint let compare x y = match x, y with | ULe (u, v), ULe (u', v') -> let i = Universe.compare u u' in if Int.equal i 0 then Universe.compare v v' else i | UEq (u, v), UEq (u', v') -> let i = Universe.compare u u' in if Int.equal i 0 then Universe.compare v v' else if Universe.equal u v' && Universe.equal v u' then 0 else i | ULub (u, v), ULub (u', v') | UWeak (u, v), UWeak (u', v') -> let i = Level.compare u u' in if Int.equal i 0 then Level.compare v v' else if Level.equal u v' && Level.equal v u' then 0 else i | ULe _, _ -> -1 | _, ULe _ -> 1 | UEq _, _ -> -1 | _, UEq _ -> 1 | ULub _, _ -> -1 | _, ULub _ -> 1 end) include S let is_trivial = function | ULe (u, v) | UEq (u, v) -> Universe.equal u v | ULub (u, v) | UWeak (u, v) -> Level.equal u v let add cst s = if is_trivial cst then s else add cst s let pr_one = function | ULe (u, v) -> Universe.pr u ++ str " <= " ++ Universe.pr v | UEq (u, v) -> Universe.pr u ++ str " = " ++ Universe.pr v | ULub (u, v) -> Level.pr u ++ str " /\\ " ++ Level.pr v | UWeak (u, v) -> Level.pr u ++ str " ~ " ++ Level.pr v let pr c = fold (fun cst pp_std -> pp_std ++ pr_one cst ++ fnl ()) c (str "") let equal x y = x == y || equal x y end type universe_constraints = Constraints.t type 'a constraint_accumulator = universe_constraints -> 'a -> 'a option type 'a universe_constrained = 'a * universe_constraints type 'a universe_constraint_function = 'a -> 'a -> universe_constraints -> universe_constraints let enforce_eq_instances_univs strict x y c = let mk u v = if strict then ULub (u, v) else UEq (Universe.make u, Universe.make v) in let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then CErrors.anomaly (Pp.str "Invalid argument: enforce_eq_instances_univs called with" ++ Pp.str " instances of different lengths."); CArray.fold_right2 (fun x y -> Constraints.add (mk x y)) ax ay c let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (super u) v let subst_univs_level fn l = try Some (fn l) with Not_found -> None let subst_univs_constraint fn (u,d,v as c) cstrs = let u' = subst_univs_level fn u in let v' = subst_univs_level fn v in match u', v' with | None, None -> Constraint.add c cstrs | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs let subst_univs_constraints subst csts = Constraint.fold (fun c cstrs -> subst_univs_constraint subst c cstrs) csts Constraint.empty let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l let subst_univs_universe_constraint fn = function | ULe (u, v) -> let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in if Universe.equal u' v' then None else Some (ULe (u',v')) | UEq (u, v) -> let u' = subst_univs_universe fn u and v' = subst_univs_universe fn v in if Universe.equal u' v' then None else Some (ULe (u',v')) | ULub (u, v) -> let u' = level_subst_of fn u and v' = level_subst_of fn v in if Level.equal u' v' then None else Some (ULub (u',v')) | UWeak (u, v) -> let u' = level_subst_of fn u and v' = level_subst_of fn v in if Level.equal u' v' then None else Some (UWeak (u',v')) let subst_univs_universe_constraints subst csts = Constraints.fold (fun c -> Option.fold_right Constraints.add (subst_univs_universe_constraint subst c)) csts Constraints.empty let to_constraints ~force_weak g s = let invalid () = raise (Invalid_argument "to_constraints: non-trivial algebraic constraint between universes") in let tr cst acc = match cst with | ULub (l, l') -> Constraint.add (l, Eq, l') acc | UWeak (l, l') when force_weak -> Constraint.add (l, Eq, l') acc | UWeak _-> acc | ULe (l, l') -> begin match Universe.level l, Universe.level l' with | Some l, Some l' -> Constraint.add (l, Le, l') acc | None, Some _ -> enforce_leq l l' acc | _, None -> if UGraph.check_leq g l l' then acc else invalid () end | UEq (l, l') -> begin match Universe.level l, Universe.level l' with | Some l, Some l' -> Constraint.add (l, Eq, l') acc | None, _ | _, None -> if UGraph.check_eq g l l' then acc else invalid () end in Constraints.fold tr s Constraint.empty (** Variant of [eq_constr_univs_infer] taking kind-of-term functions, to expose subterms of [m] and [n], arguments. *) let eq_constr_univs_infer_with kind1 kind2 univs fold m n accu = (* spiwack: duplicates the code of [eq_constr_univs_infer] because I haven't find a way to factor the code without destroying pointer-equality optimisations in [eq_constr_univs_infer]. Pointer equality is not sufficient to ensure equality up to [kind1,kind2], because [kind1] and [kind2] may be different, typically evaluating [m] and [n] in different evar maps. *) let cstrs = ref accu in let eq_universes _ _ = UGraph.check_eq_instances univs in let eq_sorts s1 s2 = if Sorts.equal s1 s2 then true else let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in match fold (Constraints.singleton (UEq (u1, u2))) !cstrs with | None -> false | Some accu -> cstrs := accu; true in let rec eq_constr' nargs m n = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' nargs m n in let res = Constr.compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq_constr' 0 m n in if res then Some !cstrs else None (* Generator of levels *) type universe_id = DirPath.t * int let new_univ_id, set_remote_new_univ_id = RemoteCounter.new_counter ~name:"Universes" 0 ~incr:((+) 1) ~build:(fun n -> Global.current_dirpath (), n) let new_univ_level () = let dp, id = new_univ_id () in Univ.Level.make dp id let fresh_level () = new_univ_level () (* TODO: remove *) let new_univ dp = Univ.Universe.make (new_univ_level dp) let new_Type dp = mkType (new_univ dp) let new_Type_sort dp = Type (new_univ dp) let fresh_universe_instance ctx = let init _ = new_univ_level () in Instance.of_array (Array.init (AUContext.size ctx) init) let fresh_instance_from_context ctx = let inst = fresh_universe_instance ctx in let constraints = AUContext.instantiate inst ctx in inst, constraints let fresh_instance ctx = let ctx' = ref LSet.empty in let init _ = let u = new_univ_level () in ctx' := LSet.add u !ctx'; u in let inst = Instance.of_array (Array.init (AUContext.size ctx) init) in !ctx', inst let existing_instance ctx inst = let () = let len1 = Array.length (Instance.to_array inst) and len2 = AUContext.size ctx in if not (len1 == len2) then CErrors.user_err ~hdr:"Universes" (str "Polymorphic constant expected " ++ int len2 ++ str" levels but was given " ++ int len1) else () in LSet.empty, inst let fresh_instance_from ctx inst = let ctx', inst = match inst with | Some inst -> existing_instance ctx inst | None -> fresh_instance ctx in let constraints = AUContext.instantiate inst ctx in inst, (ctx', constraints) (** Fresh universe polymorphic construction *) let fresh_constant_instance env c inst = let cb = lookup_constant c env in match cb.Declarations.const_universes with | Declarations.Monomorphic_const _ -> ((c,Instance.empty), ContextSet.empty) | Declarations.Polymorphic_const auctx -> let inst, ctx = fresh_instance_from auctx inst in ((c, inst), ctx) let fresh_inductive_instance env ind inst = let mib, mip = Inductive.lookup_mind_specif env ind in match mib.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> ((ind,Instance.empty), ContextSet.empty) | Declarations.Polymorphic_ind uactx -> let inst, ctx = (fresh_instance_from uactx) inst in ((ind,inst), ctx) | Declarations.Cumulative_ind acumi -> let inst, ctx = fresh_instance_from (Univ.ACumulativityInfo.univ_context acumi) inst in ((ind,inst), ctx) let fresh_constructor_instance env (ind,i) inst = let mib, mip = Inductive.lookup_mind_specif env ind in match mib.Declarations.mind_universes with | Declarations.Monomorphic_ind _ -> (((ind,i),Instance.empty), ContextSet.empty) | Declarations.Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx inst in (((ind,i),inst), ctx) | Declarations.Cumulative_ind acumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context acumi) inst in (((ind,i),inst), ctx) open Globnames let fresh_global_instance ?names env gr = match gr with | VarRef id -> mkVar id, ContextSet.empty | ConstRef sp -> let c, ctx = fresh_constant_instance env sp names in mkConstU c, ctx | ConstructRef sp -> let c, ctx = fresh_constructor_instance env sp names in mkConstructU c, ctx | IndRef sp -> let c, ctx = fresh_inductive_instance env sp names in mkIndU c, ctx let fresh_constant_instance env sp = fresh_constant_instance env sp None let fresh_inductive_instance env sp = fresh_inductive_instance env sp None let fresh_constructor_instance env sp = fresh_constructor_instance env sp None let constr_of_global gr = let c, ctx = fresh_global_instance (Global.env ()) gr in if not (Univ.ContextSet.is_empty ctx) then if Univ.LSet.is_empty (Univ.ContextSet.levels ctx) then (* Should be an error as we might forget constraints, allow for now to make firstorder work with "using" clauses *) c else CErrors.user_err ~hdr:"constr_of_global" Pp.(str "globalization of polymorphic reference " ++ Nametab.pr_global_env Id.Set.empty gr ++ str " would forget universes.") else c let constr_of_reference = constr_of_global let constr_of_global_univ (gr,u) = match gr with | VarRef id -> mkVar id | ConstRef sp -> mkConstU (sp,u) | ConstructRef sp -> mkConstructU (sp,u) | IndRef sp -> mkIndU (sp,u) let fresh_global_or_constr_instance env = function | IsConstr c -> c, ContextSet.empty | IsGlobal gr -> fresh_global_instance env gr let global_of_constr c = match kind c with | Const (c, u) -> ConstRef c, u | Ind (i, u) -> IndRef i, u | Construct (c, u) -> ConstructRef c, u | Var id -> VarRef id, Instance.empty | _ -> raise Not_found open Declarations let type_of_reference env r = match r with | VarRef id -> Environ.named_type id env, ContextSet.empty | ConstRef c -> let cb = Environ.lookup_constant c env in let ty = cb.const_type in begin match cb.const_universes with | Monomorphic_const _ -> ty, ContextSet.empty | Polymorphic_const auctx -> let inst, ctx = fresh_instance_from auctx None in Vars.subst_instance_constr inst ty, ctx end | IndRef ind -> let (mib, oib as specif) = Inductive.lookup_mind_specif env ind in begin match mib.mind_universes with | Monomorphic_ind _ -> let ty = Inductive.type_of_inductive env (specif, Univ.Instance.empty) in ty, ContextSet.empty | Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx None in let ty = Inductive.type_of_inductive env (specif, inst) in ty, ctx | Cumulative_ind cumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context cumi) None in let ty = Inductive.type_of_inductive env (specif, inst) in ty, ctx end | ConstructRef cstr -> let (mib,oib as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in begin match mib.mind_universes with | Monomorphic_ind _ -> Inductive.type_of_constructor (cstr,Instance.empty) specif, ContextSet.empty | Polymorphic_ind auctx -> let inst, ctx = fresh_instance_from auctx None in Inductive.type_of_constructor (cstr,inst) specif, ctx | Cumulative_ind cumi -> let inst, ctx = fresh_instance_from (ACumulativityInfo.univ_context cumi) None in Inductive.type_of_constructor (cstr,inst) specif, ctx end let type_of_global t = type_of_reference (Global.env ()) t let fresh_sort_in_family env = function | InProp -> Sorts.prop, ContextSet.empty | InSet -> Sorts.set, ContextSet.empty | InType -> let u = fresh_level () in Type (Univ.Universe.make u), ContextSet.singleton u let new_sort_in_family sf = fst (fresh_sort_in_family (Global.env ()) sf) let extend_context (a, ctx) (ctx') = (a, ContextSet.union ctx ctx') let new_global_univ () = let u = fresh_level () in (Univ.Universe.make u, ContextSet.singleton u) (** Simplification *) module LevelUnionFind = Unionfind.Make (Univ.LSet) (Univ.LMap) let add_list_map u t map = try let l = LMap.find u map in LMap.set u (t :: l) map with Not_found -> LMap.add u [t] map module UF = LevelUnionFind (** Precondition: flexible <= ctx *) let choose_canonical ctx flexible algs s = let global = LSet.diff s ctx in let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in (** If there is a global universe in the set, choose it *) if not (LSet.is_empty global) then let canon = LSet.choose global in canon, (LSet.remove canon global, rigid, flexible) else (** No global in the equivalence class, choose a rigid one *) if not (LSet.is_empty rigid) then let canon = LSet.choose rigid in canon, (global, LSet.remove canon rigid, flexible) else (** There are only flexible universes in the equivalence class, choose a non-algebraic. *) let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in if not (LSet.is_empty nonalgs) then let canon = LSet.choose nonalgs in canon, (global, rigid, LSet.remove canon flexible) else let canon = LSet.choose algs in canon, (global, rigid, LSet.remove canon flexible) let subst_univs_fn_constr f c = let changed = ref false in let fu = Univ.subst_univs_universe f in let fi = Univ.Instance.subst_fn (level_subst_of f) in let rec aux t = match kind t with | Sort (Sorts.Type u) -> let u' = fu u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | Const (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> let u' = fi u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstructU (c, u')) | _ -> map aux t in let c' = aux c in if !changed then c' else c let subst_univs_constr subst c = if Univ.is_empty_subst subst then c else let f = Univ.make_subst subst in subst_univs_fn_constr f c let subst_univs_constr = if Flags.profile then let subst_univs_constr_key = CProfile.declare_profile "subst_univs_constr" in CProfile.profile2 subst_univs_constr_key subst_univs_constr else subst_univs_constr let subst_univs_fn_puniverses lsubst (c, u as cu) = let u' = Instance.subst_fn lsubst u in if u' == u then cu else (c, u') let nf_evars_and_universes_opt_subst f subst = let subst = fun l -> match LMap.find l subst with None -> raise Not_found | Some l' -> l' in let lsubst = level_subst_of subst in let rec aux c = match kind c with | Evar (evk, args) -> let args = Array.map aux args in (match try f (evk, args) with Not_found -> None with | None -> c | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstructU pu' | Sort (Type u) -> let u' = Univ.subst_univs_universe subst u in if u' == u then c else mkSort (sort_of_univ u') | _ -> Constr.map aux c in aux let fresh_universe_context_set_instance ctx = if ContextSet.is_empty ctx then LMap.empty, ctx else let (univs, cst) = ContextSet.levels ctx, ContextSet.constraints ctx in let univs',subst = LSet.fold (fun u (univs',subst) -> let u' = fresh_level () in (LSet.add u' univs', LMap.add u u' subst)) univs (LSet.empty, LMap.empty) in let cst' = subst_univs_level_constraints subst cst in subst, (univs', cst') let normalize_univ_variable ~find ~update = let rec aux cur = let b = find cur in let b' = subst_univs_universe aux b in if Universe.equal b' b then b else update cur b' in aux let normalize_univ_variable_opt_subst ectx = let find l = match Univ.LMap.find l !ectx with | Some b -> b | None -> raise Not_found in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try ectx := Univ.LMap.add l (Some b) !ectx; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_univ_variable_subst subst = let find l = Univ.LMap.find l !subst in let update l b = assert (match Universe.level b with Some l' -> not (Level.equal l l') | None -> true); try subst := Univ.LMap.set l b !subst; b with Not_found -> assert false in normalize_univ_variable ~find ~update let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_universe_subst subst = let normlevel = normalize_univ_variable_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let ectx = ref ctx in let normalize = normalize_univ_variable_opt_subst ectx in let () = Univ.LMap.iter (fun u v -> if Option.is_empty v then () else try ignore(normalize u) with Not_found -> assert(false)) ctx in !ectx type universe_opt_subst = Universe.t option universe_map let make_opt_subst s = fun x -> (match Univ.LMap.find x s with | Some u -> u | None -> raise Not_found) let subst_opt_univs_constr s = let f = make_opt_subst s in subst_univs_fn_constr f let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let undef, def, subst = Univ.LMap.fold (fun u v (undef, def, subst) -> match v with | None -> (Univ.LSet.add u undef, def, subst) | Some b -> (undef, Univ.LSet.add u def, Univ.LMap.add u b subst)) ctx (Univ.LSet.empty, Univ.LSet.empty, Univ.LMap.empty) in ctx, undef, def, subst let pr_universe_body = function | None -> mt () | Some v -> str" := " ++ Univ.Universe.pr v let pr_universe_opt_subst = Univ.LMap.pr pr_universe_body let compare_constraint_type d d' = match d, d' with | Eq, Eq -> 0 | Eq, _ -> -1 | _, Eq -> 1 | Le, Le -> 0 | Le, _ -> -1 | _, Le -> 1 | Lt, Lt -> 0 type lowermap = constraint_type LMap.t let lower_union = let merge k a b = match a, b with | Some _, None -> a | None, Some _ -> b | None, None -> None | Some l, Some r -> if compare_constraint_type l r >= 0 then a else b in LMap.merge merge let lower_add l c m = try let c' = LMap.find l m in if compare_constraint_type c c' > 0 then LMap.add l c m else m with Not_found -> LMap.add l c m let lower_of_list l = List.fold_left (fun acc (d,l) -> LMap.add l d acc) LMap.empty l exception Found of Level.t * lowermap let find_inst insts v = try LMap.iter (fun k (enf,alg,v',lower) -> if not alg && enf && Universe.equal v' v then raise (Found (k, lower))) insts; raise Not_found with Found (f,l) -> (f,l) let compute_lbound left = (** The universe variable was not fixed yet. Compute its level using its lower bound. *) let sup l lbound = match lbound with | None -> Some l | Some l' -> Some (Universe.sup l l') in List.fold_left (fun lbound (d, l) -> if d == Le (* l <= ?u *) then sup l lbound else (* l < ?u *) (assert (d == Lt); if not (Universe.level l == None) then sup (Universe.super l) lbound else None)) None left let instantiate_with_lbound u lbound lower alg enforce (ctx, us, algs, insts, cstrs) = if enforce then let inst = Universe.make u in let cstrs' = enforce_leq lbound inst cstrs in (ctx, us, LSet.remove u algs, LMap.add u (enforce,alg,lbound,lower) insts, cstrs'), (enforce, alg, inst, lower) else (* Actually instantiate *) (Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs, LMap.add u (enforce,alg,lbound,lower) insts, cstrs), (enforce, alg, lbound, lower) type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t let _pr_constraints_map (cmap:constraints_map) = LMap.fold (fun l cstrs acc -> Level.pr l ++ str " => " ++ prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++ fnl () ++ acc) cmap (mt ()) let remove_alg l (ctx, us, algs, insts, cstrs) = (ctx, us, LSet.remove l algs, insts, cstrs) let remove_lower u lower = let levels = Universe.levels u in LSet.fold (fun l acc -> LMap.remove l acc) levels lower let minimize_univ_variables ctx us algs left right cstrs = let left, lbounds = Univ.LMap.fold (fun r lower (left, lbounds as acc) -> if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc else (* Fixed universe, just compute its glb for sharing *) let lbounds' = match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with | None -> lbounds | Some lbound -> LMap.add r (true, false, lbound, lower_of_list lower) lbounds in (Univ.LMap.remove r left, lbounds')) left (left, Univ.LMap.empty) in let rec instance (ctx', us, algs, insts, cstrs as acc) u = let acc, left, lower = try let l = LMap.find u left in let acc, left, newlow, lower = List.fold_left (fun (acc, left', newlow, lower') (d, l) -> let acc', (enf,alg,l',lower) = aux acc l in let l' = if enf then Universe.make l else l' in acc', (d, l') :: left', lower_add l d newlow, lower_union lower lower') (acc, [], LMap.empty, LMap.empty) l in let not_lower (d,l) = (* We're checking if (d,l) is already implied by the lower constraints on some level u. If it represents l < u (d is Lt or d is Le and i > 0, the i < 0 case is impossible due to invariants of Univ), and the lower constraints only have l <= u then it is not implied. *) Univ.Universe.exists (fun (l,i) -> let d = if i == 0 then d else match d with | Le -> Lt | d -> d in try let d' = LMap.find l lower in (* If d is stronger than the already implied lower * constraints we must keep it. *) compare_constraint_type d d' > 0 with Not_found -> (** No constraint existing on l *) true) l in let left = List.uniquize (List.filter not_lower left) in (acc, left, LMap.union newlow lower) with Not_found -> acc, [], LMap.empty and right = try Some (LMap.find u right) with Not_found -> None in let instantiate_lbound lbound = let alg = LSet.mem u algs in if alg then (* u is algebraic: we instantiate it with its lower bound, if any, or enforce the constraints if it is bounded from the top. *) let lower = remove_lower lbound lower in instantiate_with_lbound u lbound lower true false acc else (* u is non algebraic *) match Universe.level lbound with | Some l -> (* The lowerbound is directly a level *) (* u is not algebraic but has no upper bounds, we instantiate it with its lower bound if it is a different level, otherwise we keep it. *) let lower = LMap.remove l lower in if not (Level.equal l u) then (* Should check that u does not have upper constraints that are not already in right *) let acc' = remove_alg l acc in instantiate_with_lbound u lbound lower false false acc' else acc, (true, false, lbound, lower) | None -> try (* Another universe represents the same lower bound, we can share them with no harm. *) let can, lower = find_inst insts lbound in let lower = LMap.remove can lower in instantiate_with_lbound u (Universe.make can) lower false false acc with Not_found -> (* We set u as the canonical universe representing lbound *) instantiate_with_lbound u lbound lower false true acc in let acc' acc = match right with | None -> acc | Some cstrs -> let dangling = List.filter (fun (d, r) -> not (LMap.mem r us)) cstrs in if List.is_empty dangling then acc else let ((ctx', us, algs, insts, cstrs), (enf,_,inst,lower as b)) = acc in let cstrs' = List.fold_left (fun cstrs (d, r) -> if d == Univ.Le then enforce_leq inst (Universe.make r) cstrs else try let lev = Option.get (Universe.level inst) in Constraint.add (lev, d, r) cstrs with Option.IsNone -> failwith "") cstrs dangling in (ctx', us, algs, insts, cstrs'), b in if not (LSet.mem u ctx) then acc' (acc, (true, false, Universe.make u, lower)) else let lbound = compute_lbound left in match lbound with | None -> (* Nothing to do *) acc' (acc, (true, false, Universe.make u, lower)) | Some lbound -> try acc' (instantiate_lbound lbound) with Failure _ -> acc' (acc, (true, false, Universe.make u, lower)) and aux (ctx', us, algs, seen, cstrs as acc) u = try acc, LMap.find u seen with Not_found -> instance acc u in LMap.fold (fun u v (ctx', us, algs, seen, cstrs as acc) -> if v == None then fst (aux acc u) else LSet.remove u ctx', us, LSet.remove u algs, seen, cstrs) us (ctx, us, algs, lbounds, cstrs) let normalize_context_set g ctx us algs weak = let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in let uf = UF.create () in (** Keep the Prop/Set <= i constraints separate for minimization *) let smallles, csts = Constraint.fold (fun (l,d,r as cstr) (smallles, noneqs) -> if d == Le then if Univ.Level.is_small l then if is_set_minimization () && LSet.mem r ctx then (Constraint.add cstr smallles, noneqs) else (smallles, noneqs) else if Level.is_small r then if Level.is_prop r then raise (Univ.UniverseInconsistency (Le,Universe.make l,Universe.make r,None)) else (smallles, Constraint.add (l,Eq,r) noneqs) else (smallles, Constraint.add cstr noneqs) else (smallles, Constraint.add cstr noneqs)) csts (Constraint.empty, Constraint.empty) in let csts = (* We first put constraints in a normal-form: all self-loops are collapsed to equalities. *) let g = Univ.LSet.fold (fun v g -> UGraph.add_universe v false g) ctx UGraph.initial_universes in let g = Univ.Constraint.fold (fun (l, d, r) g -> let g = if not (Level.is_small l || LSet.mem l ctx) then try UGraph.add_universe l false g with UGraph.AlreadyDeclared -> g else g in let g = if not (Level.is_small r || LSet.mem r ctx) then try UGraph.add_universe r false g with UGraph.AlreadyDeclared -> g else g in g) csts g in let g = Univ.Constraint.fold UGraph.enforce_constraint csts g in UGraph.constraints_of_universes g in let noneqs = Constraint.fold (fun (l,d,r as cstr) noneqs -> if d == Eq then (UF.union l r uf; noneqs) else (* We ignore the trivial Prop/Set <= i constraints. *) if d == Le && Univ.Level.is_small l then noneqs else if Univ.Level.is_prop l && d == Lt && Univ.Level.is_set r then noneqs else Constraint.add cstr noneqs) csts Constraint.empty in let noneqs = Constraint.union noneqs smallles in let partition = UF.partition uf in let flex x = LMap.mem x us in let ctx, us, eqs = List.fold_left (fun (ctx, us, cstrs) s -> let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in (* Add equalities for globals which can't be merged anymore. *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) global cstrs in (* Also add equalities for rigid variables *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Univ.Eq, g) cst) rigid cstrs in let canonu = Some (Universe.make canon) in let us = LSet.fold (fun f -> LMap.add f canonu) flexible us in (LSet.diff ctx flexible, us, cstrs)) (ctx, us, Constraint.empty) partition in (* Process weak constraints: when one side is flexible and the 2 universes are unrelated unify them. *) let ctx, us, g = UPairSet.fold (fun (u,v) (ctx, us, g as acc) -> let norm = let us = ref us in level_subst_of (normalize_univ_variable_opt_subst us) in let u = norm u and v = norm v in let set_to a b = (LSet.remove a ctx, LMap.add a (Some (Universe.make b)) us, UGraph.enforce_constraint (a,Eq,b) g) in if UGraph.check_constraint g (u,Le,v) || UGraph.check_constraint g (v,Le,u) then acc else if LMap.mem u us then set_to u v else if LMap.mem v us then set_to v u else acc) weak (ctx, us, g) in (* Noneqs is now in canonical form w.r.t. equality constraints, and contains only inequality constraints. *) let noneqs = let us = ref us in let norm = level_subst_of (normalize_univ_variable_opt_subst us) in Constraint.fold (fun (u,d,v) noneqs -> let u = norm u and v = norm v in if d != Lt && Level.equal u v then noneqs else Constraint.add (u,d,v) noneqs) noneqs Constraint.empty in (* Compute the left and right set of flexible variables, constraints mentionning other variables remain in noneqs. *) let noneqs, ucstrsl, ucstrsr = Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) -> let lus = LMap.mem l us and rus = LMap.mem r us in let ucstrsl' = if lus then add_list_map l (d, r) ucstrsl else ucstrsl and ucstrsr' = add_list_map r (d, l) ucstrsr in let noneqs = if lus || rus then noneq else Constraint.add cstr noneq in (noneqs, ucstrsl', ucstrsr')) noneqs (Constraint.empty, LMap.empty, LMap.empty) in (* Now we construct the instantiation of each variable. *) let ctx', us, algs, inst, noneqs = minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs in let us = normalize_opt_subst us in (us, algs), (ctx', Constraint.union noneqs eqs) (* let normalize_conkey = CProfile.declare_profile "normalize_context_set" *) (* let normalize_context_set a b c = CProfile.profile3 normalize_conkey normalize_context_set a b c *) let is_trivial_leq (l,d,r) = Univ.Level.is_prop l && (d == Univ.Le || (d == Univ.Lt && Univ.Level.is_set r)) (* Prop < i <-> Set+1 <= i <-> Set < i *) let translate_cstr (l,d,r as cstr) = if Level.equal Level.prop l && d == Univ.Lt && not (Level.equal Level.set r) then (Level.set, d, r) else cstr let refresh_constraints univs (ctx, cstrs) = let cstrs', univs' = Univ.Constraint.fold (fun c (cstrs', univs as acc) -> let c = translate_cstr c in if is_trivial_leq c then acc else (Univ.Constraint.add c cstrs', UGraph.enforce_constraint c univs)) cstrs (Univ.Constraint.empty, univs) in ((ctx, cstrs'), univs') (**********************************************************************) (* Tools for sort-polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> univ_level_mem u v | None -> false let solve_constraints_system levels level_bounds level_min = let open Univ in let levels = Array.mapi (fun i o -> match o with | Some u -> (match Universe.level u with | Some u -> Some u | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None) | None -> None) levels in let v = Array.copy level_bounds in let nind = Array.length v in let clos = Array.map (fun _ -> Int.Set.empty) levels in (* First compute the transitive closure of the levels dependencies *) for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then clos.(i) <- Int.Set.add j clos.(i); done; done; let rec closure () = let continue = ref false in Array.iteri (fun i deps -> let deps' = Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps in if Int.Set.equal deps deps' then () else (clos.(i) <- deps'; continue := true)) clos; if !continue then closure () else () in closure (); for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && Int.Set.mem j clos.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j)); done; done; v