.. include:: ../preamble.rst .. _nsatz: Nsatz: tactics for proving equalities in integral domains =========================================================== :Author: Loïc Pottier The tactic `nsatz` proves goals of the form :math:`\begin{array}{l} \forall X_1,\ldots,X_n \in A,\\ P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\ \vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\ \end{array}` where :math:`P, Q, P₁,Q₁,\ldots,Pₛ, Qₛ` are polynomials and :math:`A` is an integral domain, i.e. a commutative ring with no zero divisor. For example, :math:`A` can be :math:`\mathbb{R}`, :math:`\mathbb{Z}`, or :math:`\mathbb{Q}`. Note that the equality :math:`=` used in these goals can be any setoid equality (see :ref:`tactics-enabled-on-user-provided-relations`) , not only Leibnitz equality. It also proves formulas :math:`\begin{array}{l} \forall X_1,\ldots,X_n \in A,\\ P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\ \rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\ \end{array}` doing automatic introductions. Using the basic tactic `nsatz` ------------------------------ Load the Nsatz module: .. coqtop:: all Require Import Nsatz. and use the tactic `nsatz`. More about `nsatz` --------------------- Hilbert’s Nullstellensatz theorem shows how to reduce proofs of equalities on polynomials on a commutative ring :math:`A` with no zero divisor to algebraic computations: it is easy to see that if a polynomial :math:`P` in :math:`A[X_1,\ldots,X_n]` verifies :math:`c P^r = \sum_{i=1}^{s} S_i P_i`, with :math:`c \in A`, :math:`c \not = 0`, :math:`r` a positive integer, and the :math:`S_i` s in :math:`A[X_1,\ldots,X_n ]`, then :math:`P` is zero whenever polynomials :math:`P_1,\ldots,P_s` are zero (the converse is also true when :math:`A` is an algebraic closed field: the method is complete). So, proving our initial problem can reduce into finding :math:`S_1,\ldots,S_s`, :math:`c` and :math:`r` such that :math:`c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)`, which will be proved by the tactic ring. This is achieved by the computation of a Gröbner basis of the ideal generated by :math:`P_1-Q_1,...,P_s-Q_s`, with an adapted version of the Buchberger algorithm. This computation is done after a step of *reification*, which is performed using :ref:`typeclasses`. The ``Nsatz`` module defines the tactic `nsatz`, which can be used without arguments, or with the syntax: | nsatz with radicalmax:=num%N strategy:=num%Z parameters:= :n:`{* var}` variables:= :n:`{* var}` where: * `radicalmax` is a bound when for searching r s.t. :math:`c (P−Q) r = \sum_{i=1..s} S_i (P i − Q i)` * `strategy` gives the order on variables :math:`X_1,\ldots,X_n` and the strategy used in Buchberger algorithm (see :cite:`sugar` for details): * strategy = 0: reverse lexicographic order and newest s-polynomial. * strategy = 1: reverse lexicographic order and sugar strategy. * strategy = 2: pure lexicographic order and newest s-polynomial. * strategy = 3: pure lexicographic order and sugar strategy. * `parameters` is the list of variables :math:`X_{i_1},\ldots,X_{i_k}` among :math:`X_1,\ldots,X_n` which are considered as parameters: computation will be performed with rational fractions in these variables, i.e. polynomials are considered with coefficients in :math:`R(X_{i_1},\ldots,X_{i_k})`. In this case, the coefficient :math:`c` can be a non constant polynomial in :math:`X_{i_1},\ldots,X_{i_k}`, and the tactic produces a goal which states that :math:`c` is not zero. * `variables` is the list of the variables in the decreasing order in which they will be used in Buchberger algorithm. If `variables` = `(@nil R)`, then `lvar` is replaced by all the variables which are not in `parameters`. See file `Nsatz.v` for many examples, especially in geometry.