.. include:: ../replaces.rst .. _extendedpatternmatching: Extended pattern-matching ========================= :Authors: Cristina Cornes and Hugo Herbelin .. TODO links to figures This section describes the full form of pattern-matching in |Coq| terms. .. |rhs| replace:: right hand side Patterns -------- The full syntax of match is presented in Figures 1.1 and 1.2. Identifiers in patterns are either constructor names or variables. Any identifier that is not the constructor of an inductive or co-inductive type is considered to be a variable. A variable name cannot occur more than once in a given pattern. It is recommended to start variable names by a lowercase letter. If a pattern has the form ``(c x)`` where ``c`` is a constructor symbol and x is a linear vector of (distinct) variables, it is called *simple*: it is the kind of pattern recognized by the basic version of match. On the opposite, if it is a variable ``x`` or has the form ``(c p)`` with ``p`` not only made of variables, the pattern is called *nested*. A variable pattern matches any value, and the identifier is bound to that value. The pattern “``_``” (called “don't care” or “wildcard” symbol) also matches any value, but does not bind anything. It may occur an arbitrary number of times in a pattern. Alias patterns written :n:`(@pattern as @identifier)` are also accepted. This pattern matches the same values as ``pattern`` does and ``identifier`` is bound to the matched value. A pattern of the form :n:`pattern | pattern` is called disjunctive. A list of patterns separated with commas is also considered as a pattern and is called *multiple pattern*. However multiple patterns can only occur at the root of pattern-matching equations. Disjunctions of *multiple pattern* are allowed though. Since extended ``match`` expressions are compiled into the primitive ones, the expressiveness of the theory remains the same. Once the stage of parsing has finished only simple patterns remain. Re-nesting of pattern is performed at printing time. An easy way to see the result of the expansion is to toggle off the nesting performed at printing (use here :opt:`Printing Matching`), then by printing the term with :cmd:`Print` if the term is a constant, or using the command :cmd:`Check`. The extended ``match`` still accepts an optional *elimination predicate* given after the keyword ``return``. Given a pattern matching expression, if all the right-hand-sides of ``=>`` have the same type, then this type can be sometimes synthesized, and so we can omit the return part. Otherwise the predicate after return has to be provided, like for the basicmatch. Let us illustrate through examples the different aspects of extended pattern matching. Consider for example the function that computes the maximum of two natural numbers. We can write it in primitive syntax by: .. coqtop:: in undo Fixpoint max (n m:nat) {struct m} : nat := match n with | O => m | S n' => match m with | O => S n' | S m' => S (max n' m') end end. Multiple patterns ----------------- Using multiple patterns in the definition of ``max`` lets us write: .. coqtop:: in undo Fixpoint max (n m:nat) {struct m} : nat := match n, m with | O, _ => m | S n', O => S n' | S n', S m' => S (max n' m') end. which will be compiled into the previous form. The pattern-matching compilation strategy examines patterns from left to right. A match expression is generated **only** when there is at least one constructor in the column of patterns. E.g. the following example does not build a match expression. .. coqtop:: all Check (fun x:nat => match x return nat with | y => y end). Aliasing subpatterns -------------------- We can also use :n:`as @ident` to associate a name to a sub-pattern: .. coqtop:: in undo Fixpoint max (n m:nat) {struct n} : nat := match n, m with | O, _ => m | S n' as p, O => p | S n', S m' => S (max n' m') end. Nested patterns --------------- Here is now an example of nested patterns: .. coqtop:: in Fixpoint even (n:nat) : bool := match n with | O => true | S O => false | S (S n') => even n' end. This is compiled into: .. coqtop:: all undo Unset Printing Matching. Print even. In the previous examples patterns do not conflict with, but sometimes it is comfortable to write patterns that admit a non trivial superposition. Consider the boolean function :g:`lef` that given two natural numbers yields :g:`true` if the first one is less or equal than the second one and :g:`false` otherwise. We can write it as follows: .. coqtop:: in undo Fixpoint lef (n m:nat) {struct m} : bool := match n, m with | O, x => true | x, O => false | S n, S m => lef n m end. Note that the first and the second multiple pattern superpose because the couple of values ``O O`` matches both. Thus, what is the result of the function on those values? To eliminate ambiguity we use the *textual priority rule*: we consider patterns ordered from top to bottom, then a value is matched by the pattern at the ith row if and only if it is not matched by some pattern of a previous row. Thus in the example,O O is matched by the first pattern, and so :g:`(lef O O)` yields true. Another way to write this function is: .. coqtop:: in Fixpoint lef (n m:nat) {struct m} : bool := match n, m with | O, x => true | S n, S m => lef n m | _, _ => false end. Here the last pattern superposes with the first two. Because of the priority rule, the last pattern will be used only for values that do not match neither the first nor the second one. Terms with useless patterns are not accepted by the system. Here is an example: .. coqtop:: all Fail Check (fun x:nat => match x with | O => true | S _ => false | x => true end). Disjunctive patterns -------------------- Multiple patterns that share the same right-hand-side can be factorized using the notation :n:`{+| @mult_pattern}`. For instance, :g:`max` can be rewritten as follows: .. coqtop:: in undo Fixpoint max (n m:nat) {struct m} : nat := match n, m with | S n', S m' => S (max n' m') | 0, p | p, 0 => p end. Similarly, factorization of (non necessary multiple) patterns that share the same variables is possible by using the notation :n:`{+| @pattern}`. Here is an example: .. coqtop:: in Definition filter_2_4 (n:nat) : nat := match n with | 2 as m | 4 as m => m | _ => 0 end. Here is another example using disjunctive subpatterns. .. coqtop:: in Definition filter_some_square_corners (p:nat*nat) : nat*nat := match p with | ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n) | _ => (0,0) end. About patterns of parametric types ---------------------------------- Parameters in patterns ~~~~~~~~~~~~~~~~~~~~~~ When matching objects of a parametric type, parameters do not bind in patterns. They must be substituted by “``_``”. Consider for example the type of polymorphic lists: .. coqtop:: in Inductive List (A:Set) : Set := | nil : List A | cons : A -> List A -> List A. We can check the function *tail*: .. coqtop:: all Check (fun l:List nat => match l with | nil _ => nil nat | cons _ _ l' => l' end). When we use parameters in patterns there is an error message: .. coqtop:: all Fail Check (fun l:List nat => match l with | nil A => nil nat | cons A _ l' => l' end). .. opt:: Asymmetric Patterns This option (off by default) removes parameters from constructors in patterns: .. coqtop:: all Set Asymmetric Patterns. Check (fun l:List nat => match l with | nil => nil | cons _ l' => l' end). Unset Asymmetric Patterns. Implicit arguments in patterns ------------------------------ By default, implicit arguments are omitted in patterns. So we write: .. coqtop:: all Arguments nil [A]. Arguments cons [A] _ _. Check (fun l:List nat => match l with | nil => nil | cons _ l' => l' end). But the possibility to use all the arguments is given by “``@``” implicit explicitations (as for terms 2.7.11). .. coqtop:: all Check (fun l:List nat => match l with | @nil _ => @nil nat | @cons _ _ l' => l' end). .. _matching-dependent: Matching objects of dependent types ----------------------------------- The previous examples illustrate pattern matching on objects of non- dependent types, but we can also use the expansion strategy to destructure objects of dependent type. Consider the type :g:`listn` of lists of a certain length: .. coqtop:: in reset Inductive listn : nat -> Set := | niln : listn 0 | consn : forall n:nat, nat -> listn n -> listn (S n). Understanding dependencies in patterns -------------------------------------- We can define the function length over :g:`listn` by: .. coqtop:: in Definition length (n:nat) (l:listn n) := n. Just for illustrating pattern matching, we can define it by case analysis: .. coqtop:: in Definition length (n:nat) (l:listn n) := match l with | niln => 0 | consn n _ _ => S n end. We can understand the meaning of this definition using the same notions of usual pattern matching. When the elimination predicate must be provided ----------------------------------------------- Dependent pattern matching ~~~~~~~~~~~~~~~~~~~~~~~~~~ The examples given so far do not need an explicit elimination predicate because all the |rhs| have the same type and the strategy succeeds to synthesize it. Unfortunately when dealing with dependent patterns it often happens that we need to write cases where the type of the |rhs| are different instances of the elimination predicate. The function concat for listn is an example where the branches have different type and we need to provide the elimination predicate: .. coqtop:: in Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} : listn (n + m) := match l in listn n return listn (n + m) with | niln => l' | consn n' a y => consn (n' + m) a (concat n' y m l') end. The elimination predicate is :g:`fun (n:nat) (l:listn n) => listn (n+m)`. In general if :g:`m` has type :g:`(I q1 … qr t1 … ts)` where :g:`q1, …, qr` are parameters, the elimination predicate should be of the form :g:`fun y1 … ys x : (I q1 … qr y1 … ys ) => Q`. In the concrete syntax, it should be written : ``match m as x in (I _ … _ y1 … ys) return Q with … end`` The variables which appear in the ``in`` and ``as`` clause are new and bounded in the property :g:`Q` in the return clause. The parameters of the inductive definitions should not be mentioned and are replaced by ``_``. Multiple dependent pattern matching ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Recall that a list of patterns is also a pattern. So, when we destructure several terms at the same time and the branches have different types we need to provide the elimination predicate for this multiple pattern. It is done using the same scheme, each term may be associated to an as and in clause in order to introduce a dependent product. For example, an equivalent definition for :g:`concat` (even though the matching on the second term is trivial) would have been: .. coqtop:: in Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} : listn (n + m) := match l in listn n, l' return listn (n + m) with | niln, x => x | consn n' a y, x => consn (n' + m) a (concat n' y m x) end. Even without real matching over the second term, this construction can be used to keep types linked. If :g:`a` and :g:`b` are two :g:`listn` of the same length, by writing .. coqtop:: in Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} : listn (n + m) := match l in listn n, l' return listn (n + m) with | niln, x => x | consn n' a y, x => consn (n' + m) a (concat n' y m x) end. I have a copy of :g:`b` in type :g:`listn 0` resp :g:`listn (S n')`. .. _match-in-patterns: Patterns in ``in`` ~~~~~~~~~~~~~~~~~~ If the type of the matched term is more precise than an inductive applied to variables, arguments of the inductive in the ``in`` branch can be more complicated patterns than a variable. Moreover, constructors whose type do not follow the same pattern will become impossible branches. In an impossible branch, you can answer anything but False_rect unit has the advantage to be subterm of anything. To be concrete: the ``tail`` function can be written: .. coqtop:: in Definition tail n (v: listn (S n)) := match v in listn (S m) return listn m with | niln => False_rect unit | consn n' a y => y end. and :g:`tail n v` will be subterm of :g:`v`. Using pattern matching to write proofs -------------------------------------- In all the previous examples the elimination predicate does not depend on the object(s) matched. But it may depend and the typical case is when we write a proof by induction or a function that yields an object of dependent type. An example of proof using match in given in Section 8.2.3. For example, we can write the function :g:`buildlist` that given a natural number :g:`n` builds a list of length :g:`n` containing zeros as follows: .. coqtop:: in Fixpoint buildlist (n:nat) : listn n := match n return listn n with | O => niln | S n => consn n 0 (buildlist n) end. We can also use multiple patterns. Consider the following definition of the predicate less-equal :g:`Le`: .. coqtop:: in Inductive LE : nat -> nat -> Prop := | LEO : forall n:nat, LE 0 n | LES : forall n m:nat, LE n m -> LE (S n) (S m). We can use multiple patterns to write the proof of the lemma :g:`forall (n m:nat), (LE n m) \/ (LE m n)`: .. coqtop:: in Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n := match n, m return LE n m \/ LE m n with | O, x => or_introl (LE x 0) (LEO x) | x, O => or_intror (LE x 0) (LEO x) | S n as n', S m as m' => match dec n m with | or_introl h => or_introl (LE m' n') (LES n m h) | or_intror h => or_intror (LE n' m') (LES m n h) end end. In the example of :g:`dec`, the first match is dependent while the second is not. The user can also use match in combination with the tactic :tacn:`refine` (see Section 8.2.3) to build incomplete proofs beginning with a match construction. Pattern-matching on inductive objects involving local definitions ----------------------------------------------------------------- If local definitions occur in the type of a constructor, then there are two ways to match on this constructor. Either the local definitions are skipped and matching is done only on the true arguments of the constructors, or the bindings for local definitions can also be caught in the matching. .. example:: .. coqtop:: in Inductive list : nat -> Set := | nil : list 0 | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)). In the next example, the local definition is not caught. .. coqtop:: in Fixpoint length n (l:list n) {struct l} : nat := match l with | nil => 0 | cons n l0 => S (length (2 * n) l0) end. But in this example, it is. .. coqtop:: in Fixpoint length' n (l:list n) {struct l} : nat := match l with | nil => 0 | @cons _ m l0 => S (length' m l0) end. .. note:: For a given matching clause, either none of the local definitions or all of them can be caught. .. note:: You can only catch let bindings in mode where you bind all variables and so you have to use ``@`` syntax. .. note:: this feature is incoherent with the fact that parameters cannot be caught and consequently is somehow hidden. For example, there is no mention of it in error messages. Pattern-matching and coercions ------------------------------ If a mismatch occurs between the expected type of a pattern and its actual type, a coercion made from constructors is sought. If such a coercion can be found, it is automatically inserted around the pattern. .. example:: .. coqtop:: in Inductive I : Set := | C1 : nat -> I | C2 : I -> I. Coercion C1 : nat >-> I. .. coqtop:: all Check (fun x => match x with | C2 O => 0 | _ => 0 end). When does the expansion strategy fail? -------------------------------------- The strategy works very like in ML languages when treating patterns of non-dependent type. But there are new cases of failure that are due to the presence of dependencies. The error messages of the current implementation may be sometimes confusing. When the tactic fails because patterns are somehow incorrect then error messages refer to the initial expression. But the strategy may succeed to build an expression whose sub-expressions are well typed when the whole expression is not. In this situation the message makes reference to the expanded expression. We encourage users, when they have patterns with the same outer constructor in different equations, to name the variable patterns in the same positions with the same name. E.g. to write ``(cons n O x) => e1`` and ``(cons n _ x) => e2`` instead of ``(cons n O x) => e1`` and ``(cons n' _ x') => e2``. This helps to maintain certain name correspondence between the generated expression and the original. Here is a summary of the error messages corresponding to each situation: .. exn:: The constructor @ident expects @num arguments. The variable ident is bound several times in pattern termFound a constructor of inductive type term while a constructor of term is expectedPatterns are incorrect (because constructors are not applied to the correct number of the arguments, because they are not linear or they are wrongly typed). .. exn:: Non exhaustive pattern-matching. The pattern matching is not exhaustive. .. exn:: The elimination predicate term should be of arity @num (for non \ dependent case) or @num (for dependent case). The elimination predicate provided to match has not the expected arity. .. exn:: Unable to infer a match predicate Either there is a type incompatibility or the problem involves dependencies. There is a type mismatch between the different branches. The user should provide an elimination predicate.